首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种基于流行降维的近红外光谱技术快速判别大米贮藏期的新方法。采用近红外光谱仪获取陈年米和新米的反射光谱特征曲线,利用直接正交信号矫正法(direct orthogonal signal correction, DOSC)对原始光谱进行预处理,滤除光谱数据中与因变量Y矩阵无关的信号,以消除无关信息对后续特征变量建模精度的影响。采用Durbin-Watson和Run测试法定性分析光谱数据结构的非线性性,并利用增强偏残差图(augmented partial residual plot)定量分析大米光谱曲线的非线性程度。分别采用线性流行降维法包括主成分分析法(PCA)和多维尺度分析法(MDS)以及非线性流行降维法包括等距映射法(ISOMAP)、局部线性嵌入法(LLE)和拉普拉斯特征映射法(LE)提取预处理后光谱数据的本征变量,并结合核偏最小二乘方法(KPLS)建立本征变量与贮藏时间属性之间的耦合模型。实验用陈年米和新米的样本数均为200个,随机将训练集和测试集样本划分为300个和100个。通过比较各个模型的预测结果得出,基于ISOMAP非线性降维法提取的40个本征变量建立的回归模型预测效果最好,预测相关系数(R2P)、预测均方根误差(RMSEP)和预测相对分析误差值(RPD)分别为0.917,0.187和2.698。实验结果说明提出的方法对于大米贮藏期具有很好的鉴别能力,该研究为今后大米贮藏期的快速无损检测提供了科学的手段。  相似文献   

2.
基于Adaboost+OLDA和近红外光谱的猪肉贮藏时间辨别   总被引:1,自引:0,他引:1  
猪肉的贮藏时间和猪肉的新鲜度紧密相关。通过近红外漫反射光谱技术获取猪肉样本数据,利用正交线性判别分析(OLDA)算法进行特征提取,同时将自适应提升法(Adaboost)引入OLDA,提出了一种基于Adaboost和OLDA的集成学习算法——Adaboost+OLDA。实验针对分类正确率和运算时间将传统特征提取算法(PCA+LDA和OLDA)和Adaboost+OLDA算法进行了对比研究,结果表明Adaboost+OLDA算法不仅具有很好的运算效率,而且提高了OLDA算法的泛化能力,在猪肉样本测试中达到了95%以上的分类正确率。  相似文献   

3.
生菜的储藏时间是影响生菜新鲜程度的重要因素。为了快速、无损和有效地鉴别生菜的储藏时间,以欧式距离的p次方代替模糊K调和均值聚类(FKHM)中欧式距离的平方提出了一种广义模糊K调和均值聚类(GFKHM)算法并将该算法应用于鉴别生菜的储藏时间。以60个新鲜生菜样本为研究对象,采用Antaris Ⅱ近红外光谱分析仪每隔12 h检测生菜的近红外漫反射光谱,共检测三次,光谱扫描的波数范围为10 000~4 000 cm-1。首先用主成分分析(PCA)对1 557维的生菜近红外光谱进行降维处理以减少冗余信息,取前20个主成分,经过PCA处理后得到20维的数据。然后用线性判别分析(LDA)提取光谱数据的鉴别信息以提高聚类的准确率,取鉴别向量数为2,则LDA将20维的数据转换为2维数据。最后以模糊C-均值聚类(FCM)的类中心作为FKHM和GFKHM的初始聚类中心,分别运行FKHM和GFKHM计算模糊隶属度以实现生菜储藏时间的鉴别。结果表明,GFKHM的鉴别准确率能达到92.5%,FKHM的鉴别准确率为90.0%,GFKHM具有比FKHM更高的鉴别准确率。GFKHM的聚类中心比FKHM更逼近真实类中心。GFKHM的收敛速度明显快于FKHM。采用近红外光谱技术同时结合GFKHM,PCA和LDA为快速和无损地鉴别生菜储藏时间提供了一种新的方法。  相似文献   

4.
温度对叶片近红外光谱的影响   总被引:4,自引:0,他引:4  
近红外光谱分析技术是发展最快的定性和定量分析技术之一,在各个领域得到了广泛应用。但近红外谱区自身信息的特点决定了其吸收强度弱、信噪比低、谱峰严重重叠等缺点,这使得近红外光谱易受样品来源、样品种类、样品状态、装样条件和样品温度等的影响,造成光谱的不确定性。文章以温度对叶片近红外光谱的影响为研究内容,详细考察了不同温度下样品的叶绿素的校正和预测模型。结果发现温度对模型精度有一定的影响,样品的温度在10和20℃下模型的精度较高,10℃下模型精度效果最好,但是所用的主成分也较多。当实验温度达到25℃时,模型的校正和预测精度都相对较差。利用判别分析对各个温度下的光谱进行分类。发现20℃下采集的光谱没有分到其他温度区外,其他的都有不同程度的跨区,这说明除20℃外,其他温度下测得的光谱差异不明显。试验对叶片近红外检测的条件和应用做了初步的探索性工作,为今后提出温度修正模型提供理论基础。  相似文献   

5.
利用近红外光谱快速检测牛奶中三聚氰胺的可行性研究   总被引:5,自引:0,他引:5  
采集了22个合格液态牛奶样品,并制备了50个掺入不同含量三聚氰胺(0.1~1 500 mg·kg-1)的牛奶样品,应用近红外光谱仪扫描其透射光谱,研究利用近红外光谱快速检测牛奶中三聚氰胺的可行性。采用偏最小二乘法建立近红外光谱与牛奶中三聚氰胺含量之间的定量模型,结果表明近红外光谱受检测限的限制,难以准确预测牛奶中掺入的三聚氰胺的含量。而应用近红外光谱,结合判别偏最小二乘法建立定性模型,则可以实现对合格牛奶及掺入三聚氰胺的牛奶的定性鉴别,正确识别率达100%。因此,基于近红外光谱的检测方法可以初步判断牛奶中是否含有三聚氰胺,作为高效液相色谱法的补充,为定量检测做初步的筛查,可大大提高检测效率。  相似文献   

6.
应用近红外光谱技术,以偏最小二乘算法,计算预测了37种生药药材甲醇提取物的抗氧化活性。以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,考察、比较了光谱预处理方法对模型效果的影响,以预测误差均方根(RMSEP)和相对分析误差(RPD)考核了样本的预测效果,采用1,1-二苯基-2-苦肼基(DPPH)法进行了验证。研究表明,采用一阶导数+矢量归一化预处理法和筛选的近红外波段建模,预测性能最优,校正模型的R2为0.896 0,RMSECV为4.35%;预测样本的RMSEP为3.62%,RPD为2.38。近红外光谱分析技术便捷快速,可信度较高,可以用于生药抗氧化性质的整体评价。  相似文献   

7.
表面粗糙度对近红外光谱分析木材密度的影响   总被引:3,自引:0,他引:3  
近红外(NIR)光谱技术是一种基于多元统计分析建立预测模型的定量分析技术,应用十分广泛,然而,近红外光谱分析结果的准确性会受到多种因素的影响。文章分析了木材表面粗糙度对近红外光谱预测木材密度的影响。结果表明,当待预测样品的粗糙度和建模样品的粗糙度一致时,分析结果较好;二者不一致时,分析误差较大。采用不同粗糙度样品建立混合预测模型,可以显著提高模型对粗糙度的适应性和稳健性。  相似文献   

8.
近红外光谱分析中的变量选择算法研究进展   总被引:4,自引:0,他引:4  
随着人们对近红外光谱分析技术了解的深入,人们发现通过剔除近红外光谱中的冗余变量不仅可以简化近红外光谱分析模型,提高模型的可解读性,通常还可以提高模型的预测效果及稳健性。变量选择的有效性已经在各种近红外光谱应用体系中得到了广泛的验证,发展成为了近红外光谱分析建模过程中一个越来越重要的步骤。为此,化学计量学家们近些年来开发了大量原理不同的新型变量选择算法,基于各种原理的衍生算法也层出不穷。为了让近红外光谱分析研究人员能够较为迅速地对这些算法的特点有所认识,对目前常见的各种变量选择算法的算法原理和优缺点进行了梳理。根据各种算法依据的原理不同,将目前近红外光谱领域常见的变量选择算法大致分为基于偏最小二乘模型参数,基于智能优化算法,基于连续投影策略,基于模型集群分析策略和基于变量区间等五类。在梳理的过程中,我们发现变量选择算法的发展趋势目前主要集中在以下两点:第一,算法的复杂程度不断提高;第二,不同变量选择算法之间的联用开始逐渐增多。此外,作者结合自身在应用变量选择算法时的体会和思考,还总结了变量选择算法在应用层面上存在的一些问题。例如光谱预处理方法对变量选择算法使用效果的影响,以及部分算法存在的稳定性较差,选择变量的可靠性存疑等。  相似文献   

9.
    
This review paper reports near-infrared (NIR) imaging studies using a newly-developed NIR camera, Compovision. Compovision can measure a significantly wide area of 150 mm×250 mm at high speed of between 2 and 5 s. It enables a wide spectral region measurement in the 1 000~2 350 nm range at 6 nm intervals. We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers. Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection. NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products, biomedical substances and organic and inorganic materials.  相似文献   

10.
生物柴油是典型的“绿色能源”,具备良好的环保性和燃料特性,通常与柴油混合使用在柴油发动机上。但是目前世界各国柴油与生物柴油混合的比例标准参次不齐,没有一个统一的标准,并且不同比例的柴油/生物柴油混合物具有不同的燃烧性能,也会对柴油发动机产生一定程度的影响。为了能够快速、准确的测量柴油/生物柴油混合物中的生物柴油浓度,近红外光谱和拉曼光谱在燃油检测方面已经得到广泛的应用。利用拉曼及近红外光谱对柴油/生物柴油混合物中的生物柴油浓度进行了量化分析研究。首先采集了柴油/生物柴油混合燃油的拉曼光谱及近红外吸收光谱,然后利用平滑、基线校正、归一化等方法对采集到的光谱进行预处理。从光谱图中观察到,在柴油/生物柴油混合物的拉曼光谱和近红外光谱中都有C═O特征光谱区域,且该光谱区域的光谱峰都随生物柴油的浓度增加而越来越明显。拉曼光谱中,随生物柴油浓度变化的主要C═O特征光谱区域是在1 743 cm-1位置处的特征峰,在近红外光谱中,随生物柴油浓度变化的主要C═O特征光谱区域是在4 659 cm-1处的特征峰。然后分别根据强度比方法和偏最小二乘(PLS)回归方法建立了相应的混合燃油中生物柴油浓度预测模型。结合强度比方法建立特征峰强度比的生物柴油浓度预测模型,由混合燃油的拉曼光谱和近红外光谱建立的C═O特征峰线性预测模型相关系数分别为0.947 2和0.996 2;结合偏最小二乘(PLS)回归法建立特征光谱区域的生物柴油浓度预测模型,由混合燃油的拉曼光谱和近红外光谱特征区域建立的相应预测集相关系数(R2)分别为0.981 5和0.991 2,相应的预测均方根误差(RMSE)分别为0.093 7和0.012 9。结果表明,在混合燃油中,使用近红外光谱中的C═O光谱区域建立的生物柴油浓度预测模型会得到更准确的预测结果。  相似文献   

11.
近红外光谱分析技术虽在多领域获得广泛应用,但应用时仍以实验室仪器为主,目前光谱仪存在体积大、功耗高、价格贵等问题,有能力购买与使用此类仪器的主要是高校、科研院所、大型企业等,常用的基于傅里叶变换或光栅原理的光谱仪价格通常高达几十万元,超出中小企业、普通百姓的经济承受能力,因此近红外光谱仪的进一步推广应用仍有难度.降低仪...  相似文献   

12.
基于近红外光谱的腐乳白坯硬度检测研究   总被引:6,自引:0,他引:6  
考察了硬度与腐乳白坯中水分含量和蛋白质含量的相关关系,探讨了利用近红外光谱技术检测白坯硬度的可行性。通过水分以及蛋白质的相关吸收峰建立预测白坯硬度的数学模型;在建模过程中重点讨论了多元散射校正(MSC)、一阶求导和波段选择等优化处理对建模的影响,利用偏最小二乘法得到的最优模型的建模相关系数r=0.935,建模标准差RMSEC=0.019 3,预测标准差RMSEP=0.023 6,其分级正确率达到94.72%;利用主成分分析法结合判别分析法建立的定性判别模型,分级正确率也达到了90.12%。上述分级结果均好于感观评价的方法,表明近红外技术可以实现白坯硬度的快速无损检测。  相似文献   

13.
小波变换在近红外光谱分析中的应用进展   总被引:13,自引:1,他引:13  
小波变换(WT)具有很好的时频分离特征,信息处理能力强,已广泛用于分析化学领域;本文就小波变换在近红外光谱领域的应用进行简述。小波变换用于近红外预处理,提取有用信息,消除背景干扰,可以提高近红外的分析精度和模型稳健性;用于数据压缩可以减少数据库存储空间,提高建模速度;小波系数用于模型传递,具有传递速度快,稳健性强,所需标样少等特点;小波变换可以与神经网络、遗传算法等结合,在近红外分析领域呈现出良好的发展前景。  相似文献   

14.
用近红外光学漫射成象方法观测语义编码在前额叶的响应   总被引:8,自引:3,他引:5  
本文采用近红外光学漫射成象技术成功观测了左右前额区在知觉与语义编码中的活动。 发现大脑在完成上述两任务时,左前额的活动显着地强于右前额,语义加工引起的活动显着地强于知觉加工。 对于每一侧而言,与浅加工相比,深加工时的活动主要集中在下前额叶。上述结果进一步证实了左前额叶在语义加工中的作用。  相似文献   

15.
不同贮藏期水蜜桃硬度及糖度的检测研究   总被引:1,自引:0,他引:1  
糖度和硬度作为水蜜桃的两个重要指标,决定其内部品质。在运输或售卖期间,水蜜桃果内水分流失,表面开始松软进而腐烂,内部品质发生变化。研究旨在探讨可见/近红外光谱预测水蜜桃不同贮藏期糖度和硬度的可行性,进一步预测水蜜桃的最佳贮藏期。采用漫透射和漫反射方式采集4个贮藏阶段的水蜜桃光谱,并测量糖度和硬度。分析了4个阶段水蜜桃的平均光谱,光谱强度随着贮藏天数增加而不断提高,且在650~680 nm区域内受果皮颜色及色素的变化产生波峰偏移。同时,分析了糖度和硬度的变化,糖度在贮藏期间逐渐提高,硬度在贮藏期间快速下降,最终糖度增加了3.31%,硬度下降了58.8%。采用多元散射校正、S-G卷积平滑、归一化处理及基线校正等预处理方法来减少噪声和误差对光谱的影响,并使用无信息变量消除(UVE)和连续投影算法(SPA)筛选特征波长,最后利用偏最小二乘回归(PLS)分别建立糖度和硬度的预测模型。分析糖度、硬度的PLS回归系数与平均光谱的波形发现,糖度的高回归系数分布在光谱多处,而硬度的该系数均在波峰波谷附近。SPA和UVE筛选的特征波长建立的糖度模型效果不佳,而硬度模型效果良好。结果表明,漫透射和漫反射检测方式下,糖度的最佳预测相关系数(Rp)及预测均方根误差(RMSEP)分别为0. 886,0.727和0.820,1.003,预处理方法分别是多元散射校正、平滑窗口宽度为3的S-G卷积平滑。此外,漫透射建立的硬度SPA-PLS模型,选用15个光谱变量,得到的Rp和RMSEP为0.798和0.976;而漫反射建立的UVE-PLS模型,选用113个光谱变量,得到的Rp和RMSEP为0.841和0.829。可以看出,漫透射方式预测水蜜桃贮藏期间的糖度更佳,而漫反射预测硬度更佳。利用可见/近红外光谱所建立的糖度和硬度预测模型,能够可靠地预测水蜜桃贮藏期内糖度和硬度的变化,对指导采摘、售卖时间和减少腐烂具有一定的参考价值。  相似文献   

16.
聚合物材料制品的性能与成型加工过程有着密切的联系,因此在线监控加工过程中材料的状态至关重要。根据在线监控实时反馈的数据,能够实现加工工艺参数的及时调整,确保生产过程的稳定性,从而保证产品质量、减少能源浪费、提高生产效益。近红外光谱在线测量技术是一种成本低、实时性强,可以准确定量分析的技术,已在很多生产领域得到了应用,然而在聚合物加工领域仍处于研究阶段。本文从测量聚合物中的组分含量、熔融指数、熔体密度、填充物的分散性四个方面概述了近红外光谱在线测量技术在聚合物加工中的应用研究进展,指出了近红外光谱在线测量技术尚存在的问题,给出了几点建议,最后对近红外光谱在线测量技术未来的发展进行了展望。指出在未来几十年里,随着光纤光谱仪器科学、计算机科学以及化学计量学方法的发展,近红外光谱在线测量技术在原始数据稳定性、预处理方法、建模方法及模型的稳健性与准确性上将会有长足的进步,将会在更多的领域推广应用,产生巨大的经济与环保价值。  相似文献   

17.
提出了一种基于近红外(NIR)光谱的黄酮类提取物抗氧化活性计算预测新方法。采用1,1-二苯-2-苦肼基(DPPH)法测定28种黄酮类中药材提取物的抗氧化活性,并在4 000~10 000 cm-1范围扫描样品的红外光谱,采用偏最小二乘(PLS)算法建立了黄酮类组分近红外光谱与抗氧化活性之间的校正模型。建模过程中,以交叉验证相关系数(R2),交叉验证误差均方根(RMSECV)为指标,确定了用于建模的最优近红外波段和光谱预处理方法。校正模型的RSECV为9.50%,R2为 0.901 7,预测误差均方根(RMSEP)为14.8%。该方法快速无损、操作简便,可用于中药及天然产物提取物抗氧化活性的快速评价。  相似文献   

18.
基于小波变换的木材近红外光谱去噪研究   总被引:3,自引:0,他引:3  
木材近红外光谱常常被一系列噪声所污染,影响光谱分析结果。为了提高近红外光谱分析精度,需要对光谱数据进行预处理。光谱导数可以消除光谱背景干扰和基线漂移等因素影响,提高光谱分辨率,但导数光谱在增强信号的同时,也使信号噪声得到增强。应用小波变换对杉木木材近红外一阶导数光谱进行去噪研究,分别采用9点平滑法、25点平滑法、非线性小波硬阈值和软阈值法、9点平滑+小波变换法和25点平滑+小波变换法对光谱数据进行去噪研究。结果显示, 小波变换能够有效去除导数光谱中的噪声信号,保留光谱中的有效信息,提高光谱信噪比,提高光谱的分析能力,在木材近红外光谱分析中具有很好的应用前景。  相似文献   

19.
近红外光谱法对甲醇柴油中甲醇含量测定   总被引:1,自引:0,他引:1  
应用近红外光谱结合化学计量学方法实现了对甲醇柴油中的甲醇含量的定量分析。以实验室配制的32种不同浓度[浓度范围为2%~25.8%(φ)]的甲醇柴油溶液为研究对象,在4 500~7 000 cm-1光谱范围内,建立偏最小二乘(PLS)、支持向量机(SVM)和最小二乘支持向量机(LS-SVM)三种定量分析模型。在建立SVM模型时,经过比较分析,径向基函数(radial basis function,RBF)作为SVM模型的核函数时可以获得更高的预测精度。最终获得甲醇含量的PLS, SVM和LS-SVM三种模型的预测相关系数RP分别为0.985 9, 0.990 3, 0.998 9,预测均方根误差RMSEP分别为0.405 2, 0.356 3, 0.062 4,可以看出,三种预测模型都可以达到很好的效果,最优的预测模型是使用LS-SVM建模。研究结果表明,利用近红外光谱法结合化学计量学方法对甲醇柴油中甲醇含量的检测具有可行性,并可以达到很好的效果。采用近红外光谱技术结合化学计量方法对甲醇柴油中甲醇含量进行定量分析,也为近红外光谱技术快速无损检测甲醇柴油甲醇含量提供参考和应用价值。  相似文献   

20.
应用近红外光谱分析不同生态环境的烟叶特性   总被引:1,自引:0,他引:1  
以2010年云南、河南、福建、广东、江西等省份11个不同生态环境地点,三个部位烟叶共495份样品为试验对象,应用近红外光谱分析不同生态环境烟叶的品质特性,结果表明:相同生态环境下,上部与中部烟叶的品质特性差异较小,而上部与下部、中部与下部烟叶的品质特性差异较为明显;不同生态环境下烟叶的品质特性间的相似性关系具有较好的一致性,其分析集与验证集特征投影值的相关系数达0.98以上。同时提出了一种相似度计算方法来表征不同生态环境下烟叶品质特性之间的相似关系,其结果可为烟叶的种植规划、质量管理以及烟叶配方等提供量化的参考数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号