首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
利用平场光栅谱仪,分别在2和3 kPa的低气压下,测量了脉宽35 fs的圆偏振超强超短激光脉冲与5 mm长氙气体靶相互作用产生的波长在5~60 nm范围内的离子谱线。2 kPa时最强的跃迁为XeⅧ:4d105s(2S1/2)—4d95s5p(2P3/2)的17.085 6 nm线,3 kPa时最强的跃迁为11.343 nm的XeⅦ 4d105s2(1S0)—4d95s25f(3P1)跃迁。两种气压下,Xe均被电离到XeⅦ,XeⅧ,XeⅨ态。  相似文献   

2.
采用波长532 nm激光(脉宽为8 ns)诱导激发铜合金等离子体光谱,研究了激光能量分别为100,80,60和40 mJ时,常压下谱线(CuⅠ 324.754 nm)自吸收现象;在激光能量为100和40 mJ的条件下,研究了低环境压力对铜合金等离子体元素发射谱线自吸收现象和谱线特性的影响。结果表明:常压下谱线(CuⅠ 324.754 nm)存在严重的自吸收现象,自吸收程度随激光能量减小而降低。适度降低环境压强,谱线的自吸收程度大大降低,谱线的信背比增大,且在一定的低气压条件下,自吸收现象可以基本消除。在5.0×104 Pa气压下,两种能量下谱线的信背比均达到最大值,分别为8.90和8.66,相对于常压分别增大了11.23和12.62倍,此时谱线强度的相对标准偏差分别为2.9%和1.3%;两种能量下等离子体元素发射谱线的线宽随着气压的下降迅速减小,当气压为5.0×104 Pa时,等离子体元素发射谱线的线宽分别为0.08和0.06 nm,是常压下线宽的19%和20%。研究表明:低压环境能明显提高光谱分析的灵敏度和精密度,使得在分析较高含量元素时允许选择灵敏谱线,为采用LIBS技术准确测定高含量元素提供了有效方法。  相似文献   

3.
激光诱导镍等离子体的自吸收时间分辨特性研究   总被引:2,自引:0,他引:2  
激光诱导击穿光谱(LIBS)技术是一种新兴的元素分析技术,但自吸收效应对LIBS测最的影响较大.文中利用Nd:YAG激光器产生的基频1 064 nm脉冲激光在空气中击穿镍靶产生等离子体,观测了四条跃迁对应同一电子组态(3d<'9>(<'2>D)4p-3d<'9>(<'2>D)4s)谱线Ni I 341.476/351.034/351.505/352.454 nm的自吸收现象.实验发现,谱线Ni I 351.034 nm没有出现自吸收现象,其下能级电子组态为3d9(<'2>D)4s的各能级中能量最高的<'3>D,态.对于其他三条谱线,在等离子体辐射初期白吸收较为严重,随着等离子体的演化,自吸收减弱.不同谱线的自吸收持续时间不同,其中谱线Ni I 352.454 nm自吸收最为严重,且当门延时为1 100 ns时仍存在明显自吸收现象,而NiI 341.476/351.505 nm的自吸收持续时间分别为900和500 ns.自吸收现象随着激光脉冲能量的增加而减弱.结果表明通过选择合适的谱线、激光脉冲能量和较长的探测门延时可以有效避免自吸收现象对LIBS测量的影响.文章还对不l司谱线自吸收持续时间小同的原因进行了讨论.  相似文献   

4.
利用Nd:YAG激光(波长1 064 nm,脉宽10 ns)烧蚀金属Cu靶获得等离子体 .改变激光脉冲能量,观测到Cu的原子谱线和离子谱线随激光脉冲能量有不同的变化关系, 但都在330 mJ/pulse时,谱线强度达到最大,随后在330 mJ~370 mJ/pulse间出现一小平台 ,能量继续增加,各谱线强度减小.同时,使用烧蚀Cu靶产生的五条原子谱线(465.11 nm,5 10.55 nm,515.32 nm,521.82 nm,529.25 nm)的相对强度,在局部热力学平衡近似下,利用B oltzmann图的最小二乘法拟合,测定了不同激光能量下Cu等离子体的电子温度.随激光能量的增加,电子温度近似单调地从1.02×104 K上升到1.46×104 K后,反而有所下降.  相似文献   

5.
利用波长为1 064 nm,最大能量为500 mJ的Nd∶YAG脉冲激光器在室温,一个标准大气压下对Mg合金冲击,改变激光能量,得到相应的Mg等离子体特征谱线。分析谱线,发现谱线有不同的演化速率,同时得到了MgⅠ,MgⅡ离子谱线,证明此实验条件下,激光能量足够Mg合金靶材充分电离。选择了相对强度较大的MgⅠ 383.2 nm, MgⅠ 470.3 nm, MgⅠ 518.4 nm三条激发谱线,利用这些发射谱线的相对强度计算了等离子体的电子温度,激光能量为500 mJ时,等离子体温度为1.63×104 K。实验结果表明:在本实验条件下,Mg原子可以得到充分激发;在200~500 mJ激光能量范围内,等离子体温度随着激光能量的降低而衰减,在350~500 mJ激光能量范围内的等离子体温度随激光能量的变化速度十分明显,200~350 mJ时等离子体温度变化速度迅速减缓;激光能量为300 mJ时,谱线相对强度明显减弱,低于350和250 mJ的谱线相对强度,不符合谱线相对强度会随着激光能量提高而上升的变化趋势,证明发生了等离子体屏蔽现象,高功率激光产生的等离子体隔断了激光与材料之间的耦合。此时的等离子体温度明显升高,不符合变化趋势,这是由于在发生等离子体屏蔽现象时,激光能量被等离子体吸收,导致等离子体温度上升。  相似文献   

6.
室温,常压下,利用Nd∶YAG脉冲激光器产生的波长为1 064 nm, 脉宽12 ns,能量分别180, 230和280 mJ的脉冲激光冲击Ti靶,使用中阶梯光栅光谱仪检测了三种激光能量下对应的光谱。调节延时器DG645的延迟时间,检测了延迟0~500 ns时间范围内Ti等离子体对应激光能量下的发射光谱,分析光谱,可以得到了九条不同的的TiⅠ 和TiⅡ等离子体谱线,证明在该实验条件下,Ti靶能够充分吸收能量电离且离子谱线具有不同的演化速率,利用Saha-Boltzmann法计算并分析Ti等离子体电子温度,实验结果表明:相同的延迟时间,激光能量越大,谱线相对强度越大,电子温度越高,谱线相对强度的变化量随激光能量的变化量增大而增大;在延时0~150 ns内,三种激光能量下的等离子体电子温度和谱线的相对强度都随延迟时间的增加而快速下降,其中280 mJ激光能量下的等离子体电子温度和谱线强度下降速率较快;在150~250 ns范围内,电子温度和谱线强度均随延迟时间的增加有一个缓慢的上升,180 mJ激光能量下的等离子体电子温度和谱线强度的上升速率较快。250~500 ns范围内,三种激光能量下的电子温度和谱线强度均随延迟时间的增加而缓慢下降。  相似文献   

7.
CdTe量子点的光谱特性及其应用   总被引:3,自引:0,他引:3  
研究了水相CdTe量子点的共振散射光谱、荧光光谱和吸收光谱特性。结果表明,随着量子点粒径(d)的增大,CdTe量子点的荧光峰(λF)发生红移,吸收峰也发生红移,且吸收峰(λA)的峰形变宽、吸光度(A)降低,λ与ln(d)均存在较好的线性关系。其函数关系为λA =126.74 ln(d)+395.92和λF=155.01 ln(d) +415.5。共振散射光谱研究表明, 共振散射波长λR与CdTe量子点粒径(3.8~8.6 nm)的对数存在较好的线性关系,线性回归方程为λR=148.37 ln(d)+418.08, 相关系数为0.995 2,而且同一粒径的CdTe量子点,共振散射强度与CdTe量子点的浓度也存在良好的线性关系,粒径为3.8 nm的CdTe量子点在波长597 nm处的线性范围,回归方程,相关系数分别为:22.5~180.0 μmol·L-1;I597 nm=0.572 1c+5.884,0.997 5。共振散射光谱法作为检测CdTe量子点粒径的一种新方法,具有简便快速及较好的应用价值。  相似文献   

8.
激光诱导击穿光谱(LIBS)因具有实时快速、多元素分析、样品损伤性小等优势,已成为检测未知物质元素组分以及相应元素含量的重要手段。近期的一些研究表明,百纳秒级别激光脉冲由于在确保有效击穿阈值的条件下延长了激光与样品作用时间,使得其LIBS光谱质量相对于传统10 ns级激光脉冲得到了提高;适度降低环境气压(至10~4 Pa量级), LIBS光谱强度和信背比均得到明显提高。为探究低气压对长脉宽(百纳秒级)激光诱导铜合金等离子体光谱特性的影响,采用自主研发80 ns脉宽Nd∶YAG激光器(波长1 064 nm,单脉冲能量20~200 mJ)作为激发光源,样品为BYG19431的锡青铜(基体元素Cu质量百分数为92.9%,低含量元素Fe质量百分数为0.007 8%),通过样品气氛控制系统改变环境气压,分别研究了低环境压力(1.01×10~5, 9.6×10~4, 9.2×10~4, 8.8×10~4和8.4×10~4 Pa)下铜合金基体元素Cu与低含量元素Fe光谱特性。实验中,激光脉冲重复频率为1 Hz,每次打击均为新鲜表面(通过真空腔内的可控旋转平台更换样品位置),每个能量和气压下分别选取5个脉冲能量较稳定的光谱,取平均值作为当前实验条件的最终实验结果,激光脉冲能量的实时监测由透反比1∶1分束镜及能量计完成。研究发现,基体元素谱线(CuⅠ324.75 nm),常压下低能量(20 mJ, 40 mJ)时均存在较严重的自吸收现象。在60 mJ时,虽自吸收效应得到改善,但谱线背景强度升高,且激光对样品的损伤加大。为在低光谱背景,微样品损伤的条件下实现光谱质量的进一步提升,实验激光能量为20 mJ。结果表明,随着环境气压降低,基体元素Cu自吸收程度大幅度降低,样品中低含量Fe元素谱线信背比增加,等离子温度升高,谱线展宽变窄。气压为8.4×10~4 Pa时,与常压相比基体元素铜(CuⅠ324.75 nm)与微量元素铁(FeⅠ330.82 nm)谱线信背比分别增强5.31和2.43倍;等离子体温度提升了21.6%;FeⅠ330.82 nm谱线展宽由0.29 nm降到0.21 nm,在一定程度提高了LIBS元素谱线的分辨率。  相似文献   

9.
用皮秒脉冲高功率Nd∶YAG激光器抽运的光学参量发生/放大器作激发源,获得了NO分子在420~500 nm波长范围内的多光子离化谱,光谱图呈现分离谱的特征,表明在该波长区间NO分子以多光子共振方式离化。离化信号随激光强度的近四次方变化关系表明,在420~500 nm波长范围内NO分子吸收4个光子而离化。通过对谱线的标识,首次分离出NO分子以E 2Σ激发电子态为中间共振态的(3+1)多光子离化光谱序列,由谱线序列峰值波长得到NO分子E 2Σ电子态的振动常数,从而实现了采用多光子离化技术对该态能级结构的实验研究。  相似文献   

10.
李丞  高勋  刘潞  林景全 《物理学报》2014,63(14):145203-145203
对磁场约束下激光诱导铜等离子体光谱强度演化进行了实验研究,分析了在磁场约束环境下的等离子体光谱强度演化过程以及激光能量对光谱增强的影响.实验结果表明:在磁场约束下铜等离子体内原子光谱和离子光谱均有所增强,在磁场约束下Cu I 510.55 nm谱线强度时间演化过程中在1.2—5.7μs时间范围内附近出现双峰结构,在距离靶材表面0—1.4 mm空间范围内磁场约束Cu I 510.55 nm光谱增强明显.Cu I510.55 nm和Cu I 515.32 nm光谱增强因子随激光能量的增加呈单调递减变化,激光能量20 mJ时增强因子最大分别为11和8.对磁场约束下等离子体发射光谱强度增强的物理原因进行了探讨.  相似文献   

11.
研究了不同条件下脉冲放电CO2激光烧蚀平板锡靶产生的等离子体极紫外辐射特性, 设计并建立了一套掠入射极紫外平焦场光栅光谱仪, 结合X射线CCD探测了光源在6.5~16.8 nm波段的时间积分辐射光谱,得到了极紫外光谱随激光脉宽, 入射脉冲能量及背景气压的变化规律。实验结果发现:入射激光脉冲能量在30~600 mJ变化时,极紫外辐射光谱的强度随辐照激光脉冲能量的增加而增加, 但并不是线性关系, 具有饱和效应, 且产生极紫外辐射的脉冲能量阈值约为30 mJ,当激光脉冲能量为425 mJ时具有最高的转换效率,此时中心波长13.5 nm处2%带宽内的转换效率约为1.2%。激光脉冲半高全宽在50~120 ns范围内变化时, 极紫外辐射光谱的峰值位置均位于13.5 nm,光谱形状几乎没有什么变化, 但是脉宽从120 ns变到52 ns后,由于激光功率密度的提高,极紫外辐射强度也随之增强了约1.6倍。极紫外光谱的强度随背景气压的增大而迅速下降, 当腔内空气气压为200 Pa时, 极紫外辐射光子几乎被全部吸收,而当缓冲氦气气压为7×104 Pa时,仍能够探测到微弱的极紫外辐射信号,计算表明100 Pa的空气对13.5 nm极紫外光的吸收系数为3.0 m-1,而100 Pa的He气的吸收系数为0.96 m-1。  相似文献   

12.
The results of the experiments on the destruction of micron-diameter conductors by an electromagnetic pulse, which is generated in an inhomogeneous coaxial line by a high-voltage power source and has a subnanosecond front, are reported. The role of electrodynamic processes in the surface layer of microconductors and in environment in the formation of the spatial structure of the plasma channel and in the transformation of the energy of the source to the energy of radiation has been revealed. The spectral characteristics of the radiation of the plasma channel have been analyzed. It has been shown that the radiation spectrum at the time of the formation of the plasma corona is continuous. The most intense spectral lines of copper (510.554, 515.324, 521.82 nm) appear at ∼3 ns after the formation of the plasma corona. The temperature has been estimated from the ratio of the intensities of the spectral lines as T e ∼ 0.7 eV.  相似文献   

13.
采用放电泵浦KrF准分子激光放大器放大波长为248.4nm的紫外超短脉冲激光。对于能量为0.7mJ、脉宽为550fs的输入脉冲,在光束直径保持10mm不变的条件下,能量放大到15mJ,脉宽展宽到1200fs。为了压缩输出脉冲宽度,分析了群速度色散和自相位调制效应对脉宽展宽的影响。利用棱镜对,采用4种不同的实验方案对脉冲引入负的线性频率啁啾,以补偿KrF准分子激光放大器CaF2窗镜中的群速度色散和自相位调制对脉冲引入的正的线性频率啁啾。结果表明:在放大器之前放置棱镜对的方式可以在保持输出脉冲能量为15mJ的同时,在棱镜对间距为110cm的条件下,将输出脉冲宽度压缩到370fs,输出波长为248.4nm、带宽为0.4nm。  相似文献   

14.
激光诱导击穿光谱(LIBS)作为一种快速、实时的元素分析技术,由于其在痕量元素探测、地质环境监测等领域有着广阔的应用前景,而受到人们极大的关注。在实际应用中,样品表面是影响等离子体产生及其特性的关键环境因素之一。在大气环境下,利用脉宽为8 ns、波长为1 064 nm的纳秒脉冲激光产生等离子体,对比研究了天然岩石样品在非平坦和平坦表面条件下等离子体的发射光谱。基于激光辅助辐射波模型,阐释了非平坦样品表面对其光谱特性的影响。通过对比等离子体时间积分光谱,发现非平坦样品的谱线强度相比于平坦样品的谱线强度减弱了近70%,该结果说明非平坦样品表面对LIBS真实测量数据的负面影响不可忽视。针对褐铁矿样品中的谱线Fe Ⅰ 404.58 nm和Fe Ⅰ 438.35 nm,研究了在平坦和非平坦样品表面下的峰值强度以及其衰减因子随激光能量的变化规律,结果表明非平坦样品表面条件下采集的光谱强度始终低于平坦样品表面的光谱强度。光谱强度的衰减因子先随激光能量增大而逐渐降低,并在激光能量33 mJ达到最小值,后随激光能量的进一步增大而增大。实验结果进一步表明在非平坦样品表面条件下产生了密度较低的等离子体,并且非平坦与平坦样品的电子密度的比值在激光能量33 mJ时达到最小,此结果与光谱强度的衰减因子随激光能量的变化趋势一致,这是源于非平坦样品表面会形成较大激光入射角度,使得激光等离子体能量吸收区厚度变薄,产生等离子体屏蔽效应所对应的激光能量阈值升高。此外,样品表面状态和激光能量对等离子体温度的影响甚微。阐述了非正入射时等离子体特征参数与正入射时等离子体特征参数的联系和差异,揭示了非平坦样品激光等离子体特征参量变化的内在物理机制,为室外LIBS探测技术在元素定性和定量分析中光谱强度的校正提供参考。  相似文献   

15.
利用波长为1064 nm,最大能量为500 mJ的 Nd:YAG脉冲激光器对紫铜进行冲击,并且改变激光能量,获得一系列等离子体特征谱线,结果表明:本实验条件下,获得铜原子谱线不完整,只有5条明显激发谱线,分别为:CuⅠ 406.33 nm, CuⅠ 458.69 nm, CuⅠ 521.8 nm, CuⅠ 529.25 nm, CuⅠ 578.2 nm。根据跃迁原理,得出激光不能使铜原子完全受到激发;选取CuⅠ 521.8 nm原子光谱与CuⅠ 578.2 nm的原子光谱谱线线型作为分析对象,发现其展宽线型不同,分别为Lorenz线型与Gauss线型。通过对应线型曲线方程分析得出,同一原子光谱不同波段对应形成光谱展宽机制不同。  相似文献   

16.
Three laser transitions (607.2 nm, 639.5 nm, 720.9 nm) in a flashlamp-pumped Pr3+:LiYF4 laser at room temperature are investigated. Cerium ions (Ce3+) doped into the fused-quartz envelope of the flashlamp efficiently transfer strong UV radiation from pumping light into the absorption region of Pr3+ ions ( = 420–480 nm), so that the slope efficiency of all three laser emissions could be increased by almost 100% compared to excitation with a pure quartz flashlamp. At a pump energy of 30 J the output energy of these three laser emissions reached 4.7 mJ, 87 mJ and 30 mJ.  相似文献   

17.
研究了在高气压、大体积、泵浦功率1.395 9 MW·cm-3抽运下,产生的XeCl*准分子激光光谱,波段307.7~308.5 nm,结果显示有两个谱线峰值307.98和308.19 nm,谱线最强的跃迁是B—X跃迁,脉冲宽度11.13 ns。在气体配比HCl∶Xe∶He=0.1%∶1%∶98.9%下,采用预电离初始电子,产生稳定辉光放电过程,获得了0.5~5 Hz,单脉冲能量450 mJ,束散角3 mrad, 短脉冲的准分子激光。  相似文献   

18.
用Nd :YAG激光烧蚀Al靶获得等离子体 ,激光脉冲能量为 145mJ·pulse-1,光源中通入Ar气作保护气体 ,压强为 10 0Pa。利用时间分辨技术获得纳秒级时间分辨光谱。分析了等离子体连续辐射、连续辐射的吸收、Al原子谱线辐射的时间演化规律 ,并进行了简短的讨论。结果发现 ,低真空时激光诱导Al等离子体的连续辐射、连续辐射的吸收、Al原子谱线辐射的时间演化规律以及它们之间的相互关系 ,与常压时的情况十分相似  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号