首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
连续小波变换定量反演土壤有机质含量   总被引:3,自引:0,他引:3  
以北京市东部地区96个潮土土样的土壤参数及对应光谱数据为数据源,采用连续小波多尺度分析处理与分析。首先将土壤光谱进行初步处理,生成小波系数,其次将土样的有机质含量与小波分解系数开展相关性分析,提取特征波段,最后采用特征波段建立预测耕层有机质含量的模型。结果表明:经连续小波处理后,光谱对耕层有机质含量的预测能力明显优于传统光谱变换技术;经连续小波分解后,对土壤有机质含量的预测能力随光谱分辨率降低呈先降后升再降的趋势;连续小波分析算法可提升土壤光谱对有机质含量的估测能力,与土壤高光谱反射率相比,基于连续小波变换的土壤有机含量最佳的精度提高19%;由于光谱分辨率为80 nm建立的模型精度较高,其R2达到0.632,这表明在连续小波算法下,光谱分辨率较低的宽波段数据可用于土壤有机质含量的监测。  相似文献   

2.
基于高光谱的土壤有机质含量估算研究   总被引:21,自引:0,他引:21  
高光谱遥感技术以其光谱分辨率高、波段连续性强、数据丰富的特点,因而在土壤养分研究中得到广泛应用.通过土壤钉机质的高光谱遥感分析,可以充分了解土壤养分的状况及动态变化,为指导农业生产及保护农业生态环境提供科学依据.本文基于江西省余江县和泰和县采集的34个红壤土样350~2 500 nm波段的光谱曲线,研究了土壤光谱与土壤有机质含量之间的关系.先对土壤反射率光谱进行两种变换:一阶微分(R')、倒数的对数log(1/R),然后在提取特征吸收波段的基础上,运用多元逐步线性回归法和偏最小二乘回归法建立相应的估算模型,并对模型进行检验.结果表明,偏最小二乘回归法优于多元逐步线性回归法,其建立的高光谱估算模型具有快速估算土壤中有机质含量的潜力.  相似文献   

3.
土壤有机质含量的高光谱估测可快速、准确监测土壤肥力,对现代化农业生产进行精准施肥提供科学依据。以新疆渭干河-库车河三角洲绿洲耕层土壤为研究对象,对采集的98个土壤样品的原始光谱反射率R分别进行传统倒数对数lg(1/R)、一阶微分R′和倒数对数一阶微分[lg(1/R)]′数学变换,以及基于小波母函数Bior1.3不同尺度分解的连续小波变换(CWT),并与实测土壤有机质含量进行相关分析,从而筛选出各类变换下与土壤有机质含量密切相关的特征波段和小波系数(p<0.01)。分别以原始光谱反射率(R)以及不同变换处理下的特征波段反射率和敏感小波系数作为自变量,土壤有机质含量作为因变量,采用偏最小二乘回归和支持向量机回归方法构建土壤有机质含量的估测模型。结果表明:(1)各类光谱变换方法有效提升光谱与土壤有机质含量之间的敏感性,其中经CWT变换后的土壤光谱反射率与有机质含量的相关性得到显著提高,相关系数由0.39提高到0.54(p<0.01)。(2)传统的[lg(1/R)]′变换构建的支持向量机回归模型,其决定系数(R2)高于lg(1/R)R′变换构建的模型,说明倒数对数一阶微分变换可有助于提高估测模型的精度,且支持向量机回归模型的精度和稳定性高于偏最小二乘回归模型。(3)经过CWT分解后,以原始光谱反射率在不同尺度上的敏感小波系数作为自变量建立的模型,估测精度和稳定性均有明显的提高,构建的R-CWT-23-SVMR模型的决定系数(R2)为0.84,均方根误差(RMSE)为1.48,相对分析误差(RPD)等于2.11,模型精度达到最高并拥有极好的预测能力。高光谱数据经多种变换处理后可有效去除白噪声,而连续小波变换处理比传统的数学变换方法更适合于挖掘土壤有效信息,实现光谱信号的近似特征和细节特征的有效分离,建立的反演模型可更加精准估测土壤有机质含量。  相似文献   

4.
高光谱成像的土壤剖面水分含量反演及制图   总被引:2,自引:0,他引:2  
传统土壤水分的获取方法仅可获得离散的土壤水分点位数据,难以获得剖面上精细且连续的水分含量分布图。研究了野外条件下利用近红外高光谱(882~1 709 nm)成像反演剖面土壤水分含量(SMC),并实现精细制图的可行性。研究剖面位于江苏省东台市,我们利用近红外高光谱成像仪对剖面进行了5天原位连续观测,共采集了280个土样用于烘干法测定SMC。原始高光谱图像经数字量化值(DN)校正、黑白校正、拼接、几何校正、剪切和掩膜等一系列预处理后,提取各采样点的平均光谱反射率。提取光谱(Raw)经吸光度[LOG10(1/R)],Savitzky-Golay平滑(SG)、一阶微分(FD)、二阶微分(SD)、多元散射校正(MSC)和标准正态变量(SNV)转换后,采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)方法建立SMC预测模型,并对比分析不同光谱预处理方法与建模方法组合条件下SMC的预测精度。结果表明,光谱反射率随SMC增加逐渐降低,不同光谱预处理方法的预测精度有所差异,除MSC方法外,同一光谱预处理方法的LS-SVM模型预测精度均高于PLSR模型,并且基于LOG10(1/R)光谱的LS-SVM模型对SMC预测精度最高,其建模集的决定系数(R2c)和均方根误差(RMSEc)分别为0.96和0.65%,预测集的决定系数(R2p)、均方根误差(RMSEp)和相对分析误差(RPDp)分别为0.88,1.05%和2.88。利用最优模型进行剖面SMC的高空间分辨率精细制图,通过比较SMC反演图中提取的预测值与实测值关系发现预测精度较高(R2: 0.85~0.95, RMSE: 0.94%~1.02%),且两者在剖面中的变化趋势基本一致,说明SMC反演图不仅能很好地反映出土壤水分在整个剖面中毫米级的含量分布信息,也可反映出同一位置处不同天数间的含量差异。因此,利用近红外高光谱成像结合优化的预测模型,能够实现土壤剖面SMC的定量预测及精细制图,有助于快速、有效监测田间剖面土壤水分状况。  相似文献   

5.
高光谱技术联合归一化光谱指数估算土壤有机质含量   总被引:4,自引:0,他引:4  
随着近地高光谱遥感技术的发展,为快速、有效、非破坏性地获取土壤有机质(SOM)信息提供了可能。土壤高光谱波段数据众多,光谱数据变量之间存在较为严重的多重共线性,影响模型复杂结构,而构建归一化光谱指数(NDSI)可以有效去除冗余信息变量,放大光谱特征信息。以江汉平原公安县为研究区,采集56份耕层土样,在室内获取土壤光谱数据,采用“重铬酸钾-外加热法”测定SOM含量,对实测土壤光谱数据(Raw)进行倒数之对数(LR)、一阶微分(FDR)和连续统去除(CR)三种变换,计算四种变换的NDSI数值,分析SOM与NDSI的二维相关性,并对一维、二维相关系数进行全波段范围内的p=0.001水平上显著性检验,提取敏感波段和敏感光谱指数,结合偏最小二乘回归(PLSR)建立SOM的估算模型,探讨二维光谱指数用于建模的可行性。研究表明,二维相关系数相比一维相关系数有不同程度的提升,以LR最为显著,相关系数数值提升约0.26;基于二维相关性分析提取的敏感光谱指数的PLSR建模效果整体优于一维相关性分析提取的敏感波段,其中,NDSILR-PLSR模型的稳健性最优,验证集R2为0.82,模型验证RPD值为2.46,模型稳定可靠,可以满足SOM的精确监测需要,适合推广到区域范围内低分辨率的航空航天遥感(如ASTER,Landsat TM等),应用潜力较大。  相似文献   

6.
传统光谱变换与连续小波耦合定量反演潮土有机质含量   总被引:2,自引:0,他引:2  
以北京地区的96个潮土土样的有机质含量为研究对象,以传统光谱变换为参照,研究分析传统光谱变换与连续小波的耦合在估测土壤有机质含量的可行性;首先采用传统光谱变换与连续小波处理土壤光谱数据,然后将处理后的光谱数据与土壤有机质含量进行相关性分析,提取敏感波段,并采用偏最小二乘法构建土壤有机质含量估测模型。结果表明:耦合传统光谱变换技术与连续小波技术可大幅提升光谱对有机质含量的敏感性,其相关系数R2最高可达0.714,这表明耦合传统光谱变换技术与连续小波技术可深入挖掘光谱内的有益信息;与传统光谱变换技术相比,基于耦合传统光谱变换技术与连续小波技术构建的模型精度更高,稳定性更好,其中以微分变换构建的模型最优,其R2=0.772,RMSE=0.223,这表明耦合传统光谱变换技术与连续小波技术可有效压制噪声的负面影响,提升光谱的稳定性。  相似文献   

7.
土壤养分直接关系到作物产量与品质状况,然而传统化学方法检测存在化学试剂消耗大、耗时费力等问题,不能满足精细农业的需求。快速获取土壤养分信息是发展精细农业、绿色农业的关键,想要了解土壤肥力状况,必须先了解有机质和总氮的含量状况。许多研究表明,长波近红外光谱被广泛应用于土壤检测领域,然而短波可见/近红外光谱在土壤有机质和总氮的研究上却非常罕见。以江西省吉安市安福县和南昌市新建区的四个村庄作为研究区,根据2×2网格法采集了深度为10~30cm的棕壤、红壤和水稻土三种最为典型的土壤样品共180份。经过研磨、风干等处理后用四分法均匀划分为两份,用于测定样品光谱信息和理化信息。将土壤样品按照2∶1(120∶60)划分为建模集和预测集。考虑到首尾端波段噪声较大,故去除325~349和1 051~1 075nm波段,将350~1 050nm波段用于光谱分析。通过连续投影算法(SPA)筛选出有机质12个特征波长点,总氮11个特征波长点,考虑到土壤光谱信息与土壤理化性质之间可能存在非线性联系,建立全波段与特征波长的线性偏最小二乘回归(PLSR)模型和非线性最小二乘支持向量机(LS-SVM)模型对土壤有机质...  相似文献   

8.
反射光谱在近年来广泛应用于土壤属性的估算.作为一种有效估算土壤全磷含量的手段,反射光谱技术可以很大程度上减少传统化学测量方法所损耗的人力物力.以江苏滨海土壤为研究对象,在30个采样点采集了共147个土样,测量土壤样品光谱反射率及全磷含量.利用原始光谱反射率数据及6种不同的光谱变换结果,通过随机抽样(RS)、KS、SPX...  相似文献   

9.
基于北京市通州、顺义两区52个潮土样品高光谱数据,利用离散小波多尺度分析技术对其进行处理分析。首先将光谱按六种尺度进行分解,然后将各尺度分解数据与土壤有机质含量进行相关性分析,并筛选敏感波段,最后利用偏最小二乘法构建土壤有机质含量估测模型。结果表明:土壤光谱反射率经小波变换后,在参与建模的特征波段中,近红外波段居多,即近红外波段估测有机质含量的贡献高于可见光波段;低频信息对有机质含量的估测能力优于高频信息;高频信息对土壤有机质含量的估测精度随光谱分辨率降低而降低;与常用光谱变换算法相比,小波变换分析法在一定程度上提高了土壤光谱对有机质含量的估测能力,其低频信息与高频信息构建的最优模型预测精度均较高,低频信息的R2=0.722,RMSE=0.221,高频信息的R2=0.670,RMSE=0.255。  相似文献   

10.
土壤有机质是土壤肥力的物质基础,其含量的高低是评价土壤肥力的重要标志.土壤有机质组分根据其溶解性可分为胡敏素(HM)、胡敏酸(HA)、富里酸(FA),不同组分的肥力特性差异显著,因此,土壤有机质组分数据可更加全面、客观的反映土壤肥力状况.传统土壤土壤有机质及组分的测定工序繁杂,效率低下且时效性差,大量研究表明高光谱技术...  相似文献   

11.
基于北京市52个潮土样本的高光谱数据和Landsat TM、环境减灾卫星(HJ)影像的波段响应函数,生成宽波段多光谱模拟数据,对比分析了室内实测光谱数据、宽波段模拟数据与土壤有机质含量的相关性,筛选敏感波段,利用偏最小二乘法构建北方潮土有机质含量预测模型。研究表明:在宽波段模拟数据建立的模型中,由Landsat TM模拟数据的差值土壤指数(DSI)、比值土壤指数(RSI)、归一化土壤指数(NDSI)及其第3波段共同构建的模型最优,其决定系数与均方根误差分别为0.586和0.280;与实测光谱数据相比,模拟数据的最佳预测模型,均优于除一阶微分、弓曲差以外的其他10种高光谱模型。因此,利用多光谱数据预测潮土有机质含量是可行的。  相似文献   

12.
去除土壤水分对高光谱估算土壤有机质含量的影响   总被引:2,自引:0,他引:2  
土壤高光谱技术具有方便快捷、无破坏、成本低等优点,已被广泛应用于估算土壤有机质含量(SOMC)。然而,野外测量的土壤高光谱数据因受外部环境因素(土壤湿度、温度、表面粗糙度等)干扰,导致SOMC估算模型适用性有待提升。土壤含水率(SMC)是影响野外测量高光谱的最主要的障碍因素之一,它的变化严重影响可见-近红外(Vis-NIR)光谱反射率的观测结果。因此,消除SMC对高光谱数据的干扰是提高土壤高光谱估算SOMC模型预测精度的关键环节。以江汉平原潜江市潮土样本为研究对象,在室内人工加湿土样,分别获取6个SMC水平的土壤高光谱数据,采用标准正态变换(SNV)对光谱数据进行预处理,基于外部参数正交化法(EPO)去除土壤水分对高光谱的影响,利用偏最小二乘方法(PLSR)建立并对比EPO处理前、后不同SMC水平SOMC反演模型。结果表明,土壤水分对Vis-NIR光谱反射率有显著的影响,掩盖了SOMC的光谱吸收特征;EPO处理前不同SMC水平的光谱曲线之间的差异较为明显,而EPO处理后的各SMC水平的光谱曲线形态基本相似;采用EPO处理后的土壤高光谱数据建立SOMC估算模型,预测集的R2p,RPD分别为0.84和2.50,其精度与EPO处理前所建模型相比有较大提升,表明EPO算法可以有效去除土壤水分的影响,从而提升SOMC的估算精度。对定向去除外部环境参数对土壤高光谱影响进行了实证,为完善野外原位获取SOMC信息技术提供理论基础。  相似文献   

13.
二进制小波技术定量反演北方潮土土壤有机质含量   总被引:1,自引:0,他引:1  
为从土壤光谱中提取土壤有机质的光谱响应信息,提升土壤有机质含量诊断精度与可靠性,以潮土有机质含量为研究对象,以北京市区域的96个耕层土壤参数与高光谱数据为数据源开展研究分析;先采用二进制小波技术将土壤光谱数据分离为5个尺度的高频数据与低频数据,再将低频数据、高频数据分别与土壤有机质实测数据进行相关性分析,提取最佳波段组合,构建有机质含量诊断模型。结果表明:(1)二进制小波技术可抑制噪声对高频信息的干扰,能有效提升光谱对土壤有机质含量的敏感性,进而提升有机质含量的诊断精度与可靠性;(2)在二进制小波技术下,高频信息对有机质含量的诊断能力明显优于低频信息,低频信息对土壤有机质含量的诊断能力随尺度增加而降低,高频信息随尺度增加呈先提升而后降低的趋势;(3)与数学方法相比,基于二进制小波变换算法构建的模型精度较高,稳定性较好,其最优模型的预测精度提高了31.5%,可靠性增加了10.5%。  相似文献   

14.
基于不同模型的土壤有机质含量高光谱反演比较分析   总被引:8,自引:0,他引:8  
以新疆奇台县为研究区域,选取该县40个土壤样本,采用多元线性逐步回归法和人工神经网络法两种方法分别建立了土壤有机质含量的反演模型,并对模型进行了检验。结果发现:不同模型的精度值各异,其拟合效果从高到低依次为人工神经网络(ANNs)集成模型>单个人工神经网络(ANNs)模型>多元逐步回归(MLSR)模型。人工神经网络的线性和非线性逼近能力较强,而其集成模型作为提高反演模型精度的重要手段,相关系数高达0.938,均方根误差和总均方根误差最小,分别仅为2.13和1.404,对土壤有机质含量的预测能力与实测光谱非常接近,分析结果达到了较实用的预测精度,为最优拟合模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号