首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of near edge structure investigations in electron energy loss spectroscopy (EELS) is discussed for characterizing the chemical bonding of elements present in the interfacial zone in fibre/matrix composites at nanometre resolution. Two different examples of corresponding analyses are given for a SiC-fibre reinforced borosilicate glass. In particular, the chemical bonding between silicon and carbon or oxygen (e.g. SiC, SiO2 and SiOxCy), respectively, is characterized. The results have been attained in a fingerprint manner by comparing the fine structure measured from a material of unknown stoichiometry to that of a standard specimen. In addition, a possibility is demonstrated to image the chemical bonding by energy-filtered microscopy using energy loss near edge structures (ELNES).  相似文献   

2.
The paper is concerned with the application of analytical transmission electron microscopy (TEM) to characterize both chemical composition and bond state of the elements detected in interlayers in C- and SiC-fibre reinforced composites. The chemical bond state of nanometre-sized regions is characterized by means of electron energy loss spectroscopy (EELS), where respective information is gained by analysing energy loss near edge structures (ELNES). In this context results of Si-L23 ELNES investigations are presented concerning the chemical bonding of silicon with carbon, nitrogen and oxygen. The specific bond state of silicon is revealed by recording series of EEL spectra at high energy resolution across the fibre/ matrix interlayers of interest. Moreover, the element distribution is imaged by energy-filtered TEM.Dedicated to Professor Dr. rer.nat. Dr. h.c. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

3.
The microchemistry of interfaces and corresponding interlayers in different fibre-reinforced ceramic and glass composite systems has been investigated by using a dedicated scanning transmission electron microscope demonstrating the potential applicabilities of such an instrument to this large field of materials science. Energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy were used to determine the materials composition on a nanometre scale. Besides analyses performed in the spot mode of the electron probe the distributions of the elements present in the interface region were measured as line profiles across the relevant interface structure by X-ray spectroscopy with a lateral resolution of about 5 nm, even for the detection of a light element as carbon. Moreover, in the composite systems under investigation the two-dimensional element distribution was also attained by energy-filtered imaging. In addition, first results of energy loss near edge structure analyses are presented indicating variations of the chemical bonding of silicon at the interface in a Nicalon fibre/Duran glass composite.  相似文献   

4.
The electronic structures of NiO, LiNiO2, and NiO2 are studied by the electron energy loss spectroscopy at Ni L(2,3), Ni M(2,3), and O K edges. The Ni L(2,3) edge spectra suggest that the formal charge of nickel is +2 in NiO, +3 with a low-spin state in LiNiO2, and +4 with a low-spin state in NiO2. This is well confirmed by first-principles calculations. The Ni M(2,3) edge spectra show similar chemical shifts to those of the Ni L(2,3) edge. Superposition of the Li K edge spectrum, however, hinders further analysis. Although the formal charge of oxygen is -2 in all the three phases, the O K edge spectra indicate a more remarkable difference in the electronic structure of the oxygen in NiO2 than that in either NiO or LiNiO2. The spectra suggest that lithium extraction from LiNiO2 reinforces the covalent bonding between the oxygen and nickel atoms and causes a notable reduction in electron density at the oxygen atoms.  相似文献   

5.
The transformation of MoO3 induced by electron beam irradiation was studied by electron energy‐loss spectroscopy (EELS) in combination with electron diffraction and high‐resolution transmission electron microscopy (HRTEM) techniques. The routes of structure transformation were dependent on the applied electron current density. In case of low current density, MoO2 was obtained. In case of high current density, MoO with a rock‐salt structure is suggested to be the final phase. The change in oxidation states of the Mo oxides was deduced from the features in energy‐loss near edge structure (ELNES) of the O K‐edge. Quantitative analysis was successfully employed on Mo M3‐edge and O K‐edge to obtain the O/Mo ratio of the reduced phases. The mechanisms of different structure transformation behaviors were suggested in the frame of radiolysis enhanced diffusion.  相似文献   

6.
The geometry,stability,binding energy and electronic properties of(SiO2)n and Ge(SiO2)n clusters(n = 7) have been investigated by Density functional theory(DFT).The results show that the lowest energy structures of Ge(SiO2)n are obtained by adding one Ge on the end site of the O atom or the Si near end site of the O atom in(SiO2)n.The chemical activation of Ge-(SiO2)n is improved compared with(SiO2)n.The calculated second-order difference of energies and fragmentation energies show that the Ge(SiO2)n clusters with n = 2 or 5 are stable.  相似文献   

7.
Compounds with carbodiimide bonds are of special interest to organic syntheses, materials science and biochemistry. The chemical reactivity of carbodiimides and their utilization ensue from their electronic structure, which can be studied via electron spectroscopic methods. Electron energy loss spectra of dicyclohexylcarbodiimide, polysilyl‐ and polytitanylcarbodiimides have been recorded. The energy loss near edge structures (ELNES) of the C–K, N–K, Si–L2,3 and Ti–L2,3‐ionization edges and their onsets as well as the features of the low‐loss region have been interpreted by ab‐initio quantumchemical calculations using density functional theory (DFT).  相似文献   

8.
为了制得表面多孔且与基材结合强度高的羟基磷灰石(HA)涂层,实验中以正丁醇为分散介质,以SiO2粉末为添加剂,纯钛片为基材,电泳沉积制备羟基磷灰石/二氧化硅/壳聚糖/(HA/SiO2/CS)复合涂层,经后续热处理得到多孔HA/SiO2复合涂层,采用扫描电镜(SEM)、傅立叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)、万能材料试验机对涂层的表面形貌、组成、结构和结合强度进行测试和表征,并通过模拟体液(SBF)浸泡法对复合涂层的生物活性进行评价.结果表明:当悬浮液中的HA/SiO2/CS质量比为1∶1∶1时,制得的HA/SiO2/CS涂层经700℃热处理后获得的HA/SiO2复合涂层孔洞分布均匀,大孔孔径在10~15μm,小孔孔径在1~5μm;涂层与基材的结合强度达到25.5 MPa;多孔HA/SiO2复合涂层在SBF中浸泡7 d后,涂层表面碳磷灰石化;说明实验中添加SiO2所制得的多孔HA/SiO2复合涂层与钛基材结合强度高,且具有良好的生物活性.  相似文献   

9.
利用X射线吸收精细结构光谱(XAFS)及紫外吸收光谱两种方法, 分析了离子液体1-丁基-3-甲基咪唑溴盐([BMIM]Br)中逐渐掺入1-丁基-3-甲基咪唑四氟硼酸盐([BMIM][BF4])时, Br-阴离子与咪唑阳离子之间氢键作用及电荷偏移量的改变. 随着[BMIM][BF4]加入量增多, Br 元素XAFS近边(XANES)显示吸收峰降低, 吸收边位置向低能端位移0.9 eV; 扩展边(EXAFS)算出径向结构显示Br 与近邻原子间平均配位数降低、平均键长增长; 紫外光谱也有明显蓝移减色效应. 这些结果都表明Br4-的掺入改变了Br-与阳离子间的电荷偏移量, 负电荷更多地转移到Br-上, 量化计算的数据同样支持该结论.  相似文献   

10.
Equilibrium geometries, charge distributions, stabilities, and electronic properties of the Ag-adsorbed (SiO(2))(n) (n=1-7) clusters have been investigated using density functional theory with generalized gradient approximation for exchange-correlation functional. The results show that the Ag atom preferably binds to silicon atom with dangling bond in nearly a fixed direction, and the incoming Ag atoms tend to cluster on the existing Ag cluster leading to the formation of Ag islands. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of the silica clusters is minor, attributing to the tendency of stability order of Ag(SiO(2))(n) (n=1-7) clusters in consistent with silica clusters. In addition, the energy gaps between the highest occupied and lowest unoccupied molecular orbitals remarkably decrease compared with the pure (SiO(2))(n) (n=1-7) clusters, eventually approaching the near infrared radiation region. This suggests that these small clusters may be an alternative material which has a similar functionality in treating cancer to the large gold-coated silica nanoshells and the small Au(3)(SiO(2))(3) cluster.  相似文献   

11.
通过浸渍还原法制备了不同比例的Pt-Mo/SiO_2催化剂,采用X射线衍射、透射电镜、X射线近边吸收谱和X射线光电子能谱表征了Pt-Mo/SiO_2催化剂的组成、结构及价态.研究结果表明,少量MoO_x修饰Pt-Mo/SiO_2催化剂在低温水汽变换反应中表现出比Pt/SiO_2催化剂更高的催化活性,过量MoO_x包覆的Pt-Mo/SiO_2催化剂活性较低.低温水汽变换反应活性来自于Pt与表面MoO_x的界面协同作用,限域在Pt纳米颗粒表面的MoO_x表现出较低价态,高分散MoO_x纳米岛修饰的Pt纳米颗粒是低温水汽变换反应的活性结构.  相似文献   

12.
Whether chemical bonding can regulate the excited-state and optoelectronic properties of donor–acceptor dyads has been largely elusive. In this work, we used electronic structure and nonadiabatic dynamics methods to explore the excited-state properties of covalently bonded zinc phthalocyanine (ZnPc)-fullerene (C60) dyads with a 6–6 (or 5–6) bonding configuration in which ZnPc is bonded to two carbon atoms shared by the two hexagonal rings (or a pentagonal and a hexagonal ring) in C60. In both cases, the locally excited (LE) states on ZnPc are spectroscopically bright. However, their different chemical bonding differentiates the electronic interactions between ZnPc and C60. In the 5–6 bonding configuration, the LE states on ZnPc are much higher in energy than the LE states on C60. Thus, the excitation energy transfer from ZnPc to C60 is thermodynamically favorable. On the other hand, in the 6–6 bonding configuration, such a process is inhibited because the LE states on ZnPc are the lowest ones. More detailed mechanisms are elucidated from nonadiabatic dynamics simulations. In the 6–6 bonding configuration, no excitation energy transfer was observed. In contrast, in the 5–6 bonding configuration, several LE and charge-transfer (CT) excitons were shown to participate in the energy-transfer process. Further analysis reveals that the photoinduced energy transfer is mediated by a CT exciton, such that electron- and hole-transfer processes take place in a concerted but asynchronous manner in the excitation energy transfer. It is also found that high-level electronic structure methods including exciton effects are indispensable to accurately describe photoinduced energy- and electron-transfer processes. Furthermore, this work opens up new avenues for regulating the excited-state properties of molecular donor–acceptor dyads by means of chemical bonding.  相似文献   

13.
由于近红外光在太阳光谱中占44%,因此,近红外光驱动的光催化剂的研制具有十分重要的意义.上转换发光材料可将低能量的近红外光子转换为高能光子,这种高能光子可以通过构建荧光共振转移系统将能量转移并活化量子效率较高的半导体材料,对于太阳能的转化利用具有潜在的应用前景.在本文中,通过胶体化学的过程在电纺丝制备的内嵌CdS纳米颗粒以及上转换荧光纳米颗粒(UCNPs)的二氧化硅复合纳米纤维表面外延生长一层二氧化钛层,通过高温煅烧得到二氧化钛复合纳米管.我们通过二氧化硅结构将CdS纳米颗粒与上转换荧光纳米颗粒紧紧束缚在一起,实现较高的荧光共振能量转移.而且,选择β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)作为纳米能量转换器,替代以前研究工作中使用的β-NaYF4:Yb(30%),Tm(0.5%)或者β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4纳米颗粒,来进一步提高近红外光的转换效率.通过透射电子显微镜照片很清楚的观察到制备的TiO2复合纳米管内部内嵌有大量的CdS与上转换纳米颗粒.通过X-射线衍射以及X-射线光电子能谱能仪器对产物的物相以及表面的化学组成进行了细致的表征.结果显示,通过本实验方法已经成功获得了TiO2复合纳米管.用稳态与瞬态荧光仪研究了最终样品的荧光性质.研究结果揭示,与上转换纳米颗粒以及二氧化硅复合纳米纤维相比,复合二氧化钛纳米管可以将上转换荧光纳米颗粒的(UV-Vis)部分荧光完全淬灭了.特别是,铒离子的荧光(650 nm)也被有效淬灭转移,说明本研究采用β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米能量转换器,可以提高近红外光的转换效率,紫外-可见吸收光谱证实,这种二氧化钛纳米管在紫外-可见光区中的吸收光谱与β-NaYF4:Yb(30%),Tm(0.5%)@NaYF4:Yb(20%),Er(2%)纳米颗粒的荧光光谱具有较大的重叠,使得上转换荧光纳米颗粒与CdS以及二氧化钛组分之间的荧光共振转移的效率大大提高,进而会显著提高光催化的效果.以罗丹明染料作为污染物为模型,我们研究了罗丹明染料在氙灯下或者近红外光光照下的光催化分解实验.研究结果表明,90%的罗丹明染料分子在20 min内就被降解掉,效率高于其它的近红外光催化剂.上转换荧光纳米颗粒的能量转换效率可以得到大幅度提高,本研究工作中制备的光催化剂利用太阳能的效率将会得到极大提高,在未来为能源危机以及环境保护提供一种可供选择的方法与技术.  相似文献   

14.
Solid material of supported coupled semiconductors MoO3-TiO2/SiO2 was prepared by the chemical modification method. BET, XRD, TEM,IR, Raman and UV-Vis DRS experiments were used to characterize the surface structure, photon absorbing and chemisorbing ability of the material. It was shown that there are some extremely small particles of anatase and MoO3 crystallites dispersed well on the surface of SiO2, which also can be coupled each other by the bonds of Ti-O-Mo. The active adsorption sites of the material exist on its surface, according to IR results, and C3H8 can be chemisorbed at the Lewis base sites of the Mo=O bonds to form molecular states. Compared with MoO3 and TiO2, the edge energy of MoO3-TiO2/SiO2 was improved and a significant rise of the photon absorbing intensity is observed, which proves the coupled structure has stronger photon ability to take in the UV light, hold back the recombination of photoexcited electron hole pairs and exhibit the quantum size effects.  相似文献   

15.
TiO(2) nanoparticles (NPs) were deposited on the surfaces of SiO(2) microspheres with a mesoporous structure prepared by a hydrolysis-controlled sol-gel technique. The TiO(2) NPs were firmly combined on the surfaces of SiO(2) microspheres through the interfacial Si-O-Ti bonds. The coupling causes the bandgap widening up to 3.37 eV, enhancing the photocatalytic activity for the decomposition of acetaldehyde under illumination of UV-light (330 < λ < 400 nm). Density functional theory calculations for model clusters suggested that the observed results are derived from the lowering in the valence band edge energy with the interfacial bond formation.  相似文献   

16.
In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.  相似文献   

17.
LCAO and PW DFT calculations of the lattice constant, bulk modulus, cohesive energy, charge distribution, band structure, and DOS for UN single crystal are analyzed. It is demonstrated that a choice of the uranium atom relativistic effective core potentials considerably affects the band structure and magnetic structure at low temperatures. All calculations indicate mixed metallic-covalent chemical bonding in UN crystal with U5f states near the Fermi level. On the basis of the experience accumulated in UN bulk simulations, we compare the atomic and electronic structure as well as the formation energy for UN(001) surface calculated on slabs of different thickness using both DFT approaches.  相似文献   

18.
Using a combination of local -- scanning tunneling microscopy -- and spatially integrated, but chemically sensitive probes -- X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy -- we have examined how 3-butenenitrile reacts with the Si(001)-2 x 1 surface at room temperature. Electron spectroscopies indicate three different nitrogen chemical bonds: a Si-C=N-Si bond, a C=C=N cumulative double bond, and a CN moiety datively bonded to a silicon atom. All molecular imprints detected by scanning tunneling microscopy (STM) involve two adjacent silicon dimers in the same row. The three geometries we propose -- a double di-sigma bonding via the CN and the C=C, a cumulative double bond formation associated with alphaC-H bond dissociation, and a di-sigma vinyl bonding plus a CN datively bonded to a silicon atom -- are all compatible with electron spectroscopies and data. Real-time Auger yield kinetic measurements show that the double di-sigma bonding geometry is unstable when exposed to a continuous flux of 3-butenenitrile molecules, as the Si-C=N-Si unit transforms into a CN moiety. A model is proposed to explain this observation.  相似文献   

19.
20.
The adsorption of cysteine on the (111) surface of gold has been studied by means of periodic supercell density-functional theory calculations. A number of different adsorption modes are examined, including adsorption through the thiol group in either thiolate or disulfide form, and adsorption through both the thiol and amino functional groups. We find that at intermediate coverage densities the latter mode of adsorption is favored, followed by thiolate adsorption at the bridge (slightly displace toward fcc) site. The N-Au and S-Au bond strengths in the amino-thiolate adsorption are estimated to be of the order of 6 and 47 kcal/mol, respectively. The electronic structure of the different systems is analyzed, with focus on the total and projected density of states, as well as on the detailed character of the electronic states at the interface. States near the Fermi energy are found to have a metal-molecule antibonding character, whereas metal-molecule bonding states mostly occur near the lower edge of the Au-d band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号