首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Discrete Mathematics》2006,306(10-11):948-952
  相似文献   

2.
3.
4.
List colourings of planar graphs   总被引:1,自引:0,他引:1  
A graph G = G(V, E) is called L-list colourable if there is a vertex colouring of G in which the colour assigned to a vertex v is chosen from a list L(v) associated with this vertex. We say G is k-choosable if all lists L(v) have the cardinality k and G is L-list colourable for all possible assignments of such lists. There are two classical conjectures from Erd s, Rubin and Taylor 1979 about the choosability of planar graphs:

every planar graph is 5-choosable and,

there are planar graphs which are not 4-choosable.

We will prove the second conjecture.  相似文献   


5.
Abstract A k-edge-coloring f of a connected graph G is a (A1, A2, , A)-defected k-edge-coloring if there is a smallest integer/ with 1 _ /3 _〈 k - i such that the multiplicity of each color j E {1,2,... ,/3} appearing at a vertex is equal to Aj _〉 2, and each color of {/3 -}- 1,/3 - 2, - , k} appears at some vertices at most one time. The (A1, A2,, A/)-defected chromatic index of G, denoted as X (A1, A2,, A/; G), is the smallest number such that every (A1,A2,-.., A/)-defected t-edge-coloring of G holds t _〉 X(A1, A2 A;; G). We obtain A(G) X(A1, )2, , A/; G) + -- (Ai - 1) _〈 /k(G) 1, and introduce two new chromatic indices of G i=1 as: the vertex pan-biuniform chromatic index X pb (G), and the neighbour vertex pan-biuniform chromatic index Xnpb(G), and furthermore find the structure of a tree T having X pb (T) =1.  相似文献   

6.
《Discrete Mathematics》2006,306(10-11):1076-1079
  相似文献   

7.
8.
9.
孙林  罗朝阳 《运筹学学报》2015,19(1):125-130
设图\,$G$\,是嵌入到欧拉示性数\,$\chi(\Sigma)\geq 0$\,的曲面\,$\Sigma$\,上的图, $\chi'(G)$\,和\,$\Delta(G)$\,分别表示图\,$G$\,的边色数和最大度. 如果\,$\Delta(G)\geq 4$\,且\,$G$\,满足以下条件: (1)\,图$G$中的任意两个三角形$T_1$, $T_2$的距离至少是$2$; (2)\,图\,$G$\,中\,$i$-圈和\,$j$-圈的距离至少是\,$1$, $i,j\in\{3,4\}$; (3)\,图\,$G$\,中没有\,$5$-圈, 则有\,$\Delta(G)=\chi'(G)$.  相似文献   

10.
11.
Consider a simple graph G = (V,E) and its proper edge colouring c with the elements of the set {1,2,…,k}. The colouring c is said to be neighbour sum distinguishing if for every pair of vertices u, v adjacent in G, the sum of colours of the edges incident with u is distinct from the corresponding sum for v. The smallest integer k for which such colouring exists is known as the neighbour sum distinguishing index of a graph and denoted by . The definition of this parameter, which makes sense for graphs containing no isolated edges, immediately implies that , where Δ is the maximum degree of G. On the other hand, it was conjectured by Flandrin et al. that for all those graphs, except for C5. We prove this bound to be asymptotically correct by showing that . The main idea of our argument relays on a random assignment of the colours, where the choice for every edge is biased by so called attractors, randomly assigned to the vertices. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 776–791, 2015  相似文献   

12.
Reed conjectured that for every ?>0 and Δ there exists g such that the fractional total chromatic number of a graph with maximum degree Δ and girth at least g is at most Δ+1+?. We prove the conjecture for Δ=3 and for even Δ?4 in the following stronger form: For each of these values of Δ, there exists g such that the fractional total chromatic number of any graph with maximum degree Δ and girth at least g is equal to Δ+1.  相似文献   

13.
An edge colouring of a graph G is called acyclic if it is proper and every cycle contains at least three colours. We show that for every , there exists a such that if G has maximum degree Δ and girth at least g then G admits an acyclic edge colouring with colours. © 2016 Wiley Periodicals, Inc. Random Struct. Alg., 50, 511–533, 2017  相似文献   

14.
Given a graph G=(V,E), a vertex colouring of V is t-frugal if no colour appears more than t times in any neighbourhood and is acyclic if each of the bipartite graphs consisting of the edges between any two colour classes is acyclic. For graphs of bounded maximum degree, Hind et al. (1997) [14] studied proper t-frugal colourings and Yuster (1998) [22] studied acyclic proper 2-frugal colourings. In this paper, we expand and generalise this study.  相似文献   

15.
In this paper, the total chromatic number and the fractional total chromatic number of circulant graphs are studied. For cubic circulant graphs we give upper bounds on the fractional total chromatic number and for 4-regular circulant graphs we find the total chromatic number for some cases and we give the exact value of the fractional total chromatic number in most cases.  相似文献   

16.
17.
18.
The r-acyclic edge chromatic number of a graph G is the minimum number of colours required to colour the edges of G in such a way that adjacent edges receive different colours and every cycle C receives at least min{|C|,r} colours. We prove that for any integer r?4, the r-acyclic edge chromatic number of any graph G with maximum degree Δ and with girth at least 3(r-1)Δ is at most 6(r-1)Δ.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号