首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
We present an algorithm which finds a minimum vertex cover in a graph G(V, E) in time O(|V|+(ak)2k3), where for connected graphs G the parameter a is defined as the minimum number of edges that must be added to a tree to produce G, and k is the maximum a over all biconnected components of the graph. The algorithm combines two main approaches for coping with NP-completeness, and thereby achieves better running time than algorithms using only one of these approaches.  相似文献   

2.
We examine a family of graphs called webs. For integers n ? 2 and k, 1 ? k ? 12n, the web W(n, k) has vertices Vn = {1, …, n} and edges {(i, j): j = i+k, …, i+n ? k, for i?Vn (sums mod n)}. A characterization is given for the vertex packing polyhedron of W(n, k) to contain a facet, none of whose projections is a facet for the lower dimensional vertex packing polyhedra of proper induced subgraphs of W(n, k). Simple necessary and sufficient conditions are given for W(n, k) to contain W(n′, k′) as an induced subgraph; these conditions are used to show that webs satisfy the Strong Perfect Graph Conjecture. Complements of webs are also studied and it is shown that if both a graph and its complement are webs, then the graph is either an odd hole or its complement.  相似文献   

3.
The concept of a k-sequential graph is presented as follows. A graph G with ∣V(G)∪ E(G)∣=t is called k-sequential if there is a bijection?: V(G)∪E(G) → {k,k+1,…,t+k?1} such that for each edgee?=xyin E(G) one has?(e?) = ∣?(x)??(y)∣. A graph that is 1-sequential is called simply sequential, and, in particular the author has conjectured that all trees are simply sequential. In this paper an introductory study of k-sequential graphs is made. Further, several variations on the problems of gracefully or sequentially numbering the elements of a graph are discussed.  相似文献   

4.
The heterochromatic number h c (H) of a non-empty hypergraph H is the smallest integer k such that for every colouring of the vertices of H with exactly k colours, there is a hyperedge of H all of whose vertices have different colours. We denote by ν(H) the number of vertices of H and by τ(H) the size of the smallest set containing at least two vertices of each hyperedge of H. For a complete geometric graph G with n ≥ 3 vertices let H = H(G) be the hypergraph whose vertices are the edges of G and whose hyperedges are the edge sets of plane spanning trees of G. We prove that if G has at most one interior vertex, then h c (H) = ν(H) ? τ(H) + 2. We also show that h c (H) = ν(H) ? τ(H) + 2 whenever H is a hypergraph with vertex set and hyperedge set given by the ground set and the bases of a matroid, respectively.  相似文献   

5.
Given a graph G, by a Grundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by Γ(G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining Γ(G)?k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus-Gaddum-type inequalities concerning Γ(G) and Γ(Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with χ(G) colors. Equivalently G is well colored if Γ(G)=χ(G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem.  相似文献   

6.
Suppose G is a graph and k,d are integers. The (k,d)-relaxed colouring game on G is a game played by two players, Alice and Bob, who take turns colouring the vertices of G with legal colours from a set X of k colours. Here a colour i is legal for an uncoloured vertex x if after colouring x with colour i, the subgraph induced by vertices of colour i has maximum degree at most d. Alice’s goal is to have all the vertices coloured, and Bob’s goal is the opposite: to have an uncoloured vertex without a legal colour. The d-relaxed game chromatic number of G, denoted by , is the least number k so that when playing the (k,d)-relaxed colouring game on G, Alice has a winning strategy. This paper proves that if G is an outerplanar graph, then for d≥6.  相似文献   

7.
The k L-list λ colouring of a graph G is an L-list colouring (with positive integers) where any two colours assigned to adjacent vertices do not belong to a set λ, where the avoided assignments are listed. Moreover, the length of the list L(x), for every vertex x of G, must be less than or equal to a positive integer k, where k is the number of colours. This problem is NP-complete and we present an efficient heuristic algorithm to solve it. A fundamental aspect of the algorithm we developed is a particular technique of backtracking that permits the direct reassignment of the vertices causing the conflict if, at the moment of assigning a colour to a vertex, no colour on the list associated to it is available. An application of this algorithm to the problem of assigning arriving or leaving trains to the available tracks at a railway station is also discussed.  相似文献   

8.
We discuss partitions of the edge set of a graph into subsets which are uniform in their internal relationships; i.e., the edges are independent, they are incident with a common vertex (a star), or three edges meet in a triangle. We define the cochromatic index z′(G) of G to be the minimum number of subsets into which the edge set of G can be partitioned so that the edges in any subset are either mutually adjacent or independent.Several bounds for z′(G) are discussed. For example, it is shown that δ(G) - 1 ? z′(G)? Δ(G) + 1, with the lower bound being attained only for a complete graph. Here δ(G) and Δ(G) denote the minimum and maximum degrees of G, respectively. The cochromatic index is also found for complete n-partite graphs.Given a graph G define a sequence of graphs G0, G1,…, Gk, with G0=G and
Gi+1=Gi -{;υ | degGi υ = Δ(Gi)}
, with k being the first value of i for which Gi is regular. Let φi(G) = |V(G) – V(Gi| + Δ (Gi) and setφ(G) = min0?i?kφi(G). We show that φ(G) ? 1 ?z′(G)?φ(G) + 1. We then s that a graph G is of class A, B or C, if z′(G) = φ(G) ? 1, φ(G), orφ(G) + 1, respectively. Examples of graphs of each class are presented; in particular, it is shown that any bipartite graph belongs to class B.Finally, we show that if a, b and c are positive integers with a?b?c + 1 and a?c, then unless a = c = b - 1 = 1, there exists a graph G having δ(G) = a, Δ(G) =c, and z′(G) = b.  相似文献   

9.
Let G be a minimally k-connected graph of order n and size e(G).Mader [4] proved that (i) e(G)?kn?(k+12); (ii) e(G)?k(n?k) if n?3k?2, and the complete bipartite graph Kk,n?k is the only minimally k-connected graph of order; n and size k(n?k) when k?2 and n?3k?1.The purpose of the present paper is to determine all minimally k-connected graphs of low order and maximal size. For each n such that k+1?n?3k?2 we prove e(G)??(n+k)28? and characterize all minimally k-connected graphs of order n and size ?((n+k)28?.  相似文献   

10.
Let α(k, p, h) be the maximum number of vertices a complete edge-colored graph may have with no color appearing more than k times at any vertex and not containing a complete subgraph on p vertices with no color appearing more than h times at any vertex. We prove that α(k, p, h) ≤ h + 1 + (k ? 1){(p ? h ? 1) × (hp + 1)}1h and obtain a stronger upper bound for α(k, 3, 1). Further, we prove that a complete edge-colored graph with n vertices contains a complete subgraph on p vertices in which no two edges have the same color if
(n3)>(p3)Σi=1t(ei2)
where ei is the number of edges of color i, 1 ≤ it.  相似文献   

11.
F.S. Roberts defined the boxicity of a graph G as the smallest positive integer n for which there exists a function F assigning to each vertex x?G a sequence F(x)(1),F(x)(2),…, F(x)(n) of closed intervals of R so that distinct vertices x and y are adjacent in G if and only if F(x)(i)∩F(y)(i)≠? fori = 1, 2, 3, …, n. Roberts then proved that if G is a graph having 2n + 1 vertices, thentheboxicityofGisatmostn. In this paper, we provide an explicit characterization of this inequality by determining for each n ? 1 the minimum collection Cn of graphs so that a graph G having 2n + 1 vertices has boxicity n if and only if it contains a graph from Cn as an induced subgraph. We also discuss combinatorial connections with analogous characterization problems for rectangle graphs, circular arc graphs, and partially ordered sets.  相似文献   

12.
13.
Let D(G)=(di,j)n×n denote the distance matrix of a connected graph G with order n, where dij is equal to the distance between vi and vj in G. The largest eigenvalue of D(G) is called the distance spectral radius of graph G, denoted by ?(G). In this paper, some graft transformations that decrease or increase ?(G) are given. With them, for the graphs with both order n and k pendant vertices, the extremal graphs with the minimum distance spectral radius are completely characterized; the extremal graph with the maximum distance spectral radius is shown to be a dumbbell graph (obtained by attaching some pendant edges to each pendant vertex of a path respectively) when 2≤kn−2; for k=1,2,3,n−1, the extremal graphs with the maximum distance spectral radius are completely characterized.  相似文献   

14.
The toroidal thickness t1(G) of a graph G is the minimum value of k for which G is the edge-union of k graphs each embeddable on a torus. It is shown that t1(K4(n)) = [12(n + 1)].  相似文献   

15.
Let kn ? kn?1 ? … ? k1 be positive integers and let (ij) denote the coefficient of xi in Πr=1j (1 + x + x2 + … + xkr). For given integers l, m, where 1 ? l ? kn + kn?1 + … + k1 and 1 ? m ? (nn), it is shown that there exist unique integers m(l), m(l ? 1),…, m(t), satisfying certain conditions, for which m = (m(l)l + (m(l?1)l?1) + … + (m(t)t). Moreover, any m l-subsets of a multiset with ki elements of type i, i = 1, 2,…, n, will contain at least (m(l)l?1) + (m(l?1)l?2) + … + (m(t)t?1 different (l ? 1)-subsets. This result has been anticipated by Greene and Kleitman, but the formulation there is not completely correct. If k1 = 1, the numbers (ji) are binomial coefficients and the result is the Kruskal-Katona theorem.  相似文献   

16.
A function diagram (f-diagram) D consists of the family of curves {1?ñ} obtained from n continuous functions fi:[0,1]→R(1?i?n). We call the intersection graph of D a function graph (f-graph). It is shown that a graph G is an f-graph if and only if its complement ? is a comparability graph. An f-diagram generalizes the notion of a permulation diagram where the fi are linear functions. It is also shown that G is the intersection graph of the concatenation of ?k permutation diagrams if and only if the partial order dimension of G? is ?k+1. Computational complexity results are obtained for recognizing such graphs.  相似文献   

17.
A proper vertex colouring of a 2-connected plane graph G is a parity vertex colouring if for each face f and each colour c, either no vertex or an odd number of vertices incident with f is coloured with c. The minimum number of colours used in such a colouring of G is denoted by χp(G).In this paper, we prove that χp(G)≤118 for every 2-connected plane graph G.  相似文献   

18.
Let G(itk, p) denote the class of k-partite graphs, where each part is a stable set of cardinality p and where the edges between any pair of stable sets are those of a perfect matching. Maru?i? has conjectured that if G belongs to G(k, p) and is connected then G is hamiltonian. It is proved that the conjecture is true for k ≤ 3 or p ≤ 3; but for k ≥ 4 and p ≥ 4 a non-hamiltonian connected graph in G(k, p) is constructed.  相似文献   

19.
Let G be a graph with chromatic number χ(G) and let t(G) be the minimum number of vertices in any color class among all χ(G)-vertex colorings of G. Let H′ be a connected graph and let H be a graph obtained by subdividing (adding extra vertices to) a fixed edge of H′. It is proved that if the order of H is sufficiently large, the ith Ramsey number ri(G, H) equals [((χ(G)?1)(|H|?1)+t(G)?1)i]+1.  相似文献   

20.
A k-colouring(not necessarily proper) of vertices of a graph is called acyclic, if for every pair of distinct colours i and j the subgraph induced by the edges whose endpoints have colours i and j is acyclic. We consider acyclic k-colourings such that each colour class induces a graph with a given(hereditary) property. In particular, we consider acyclic k-colourings in which each colour class induces a graph with maximum degree at most t, which are referred to as acyclic t-improper k-colourings. The acyclic t-improper chromatic number of a graph G is the smallest k for which there exists an acyclic t-improper k-colouring of G. We focus on acyclic colourings of graphs with maximum degree 4. We prove that 3 is an upper bound for the acyclic 3-improper chromatic number of this class of graphs. We also provide a non-trivial family of graphs with maximum degree4 whose acyclic 3-improper chromatic number is at most 2, namely, the graphs with maximum average degree at most 3. Finally, we prove that any graph G with Δ(G) 4 can be acyclically coloured with 4 colours in such a way that each colour class induces an acyclic graph with maximum degree at most 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号