首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is presently the most common pharmacological approach available for Alzheimer’s disease (AD). Despite research on the molecular bases of AD, potent therapeutic agent against its expansion is still needed. In searching for natural cholinesterase inhibitors, the present study was focused on the isolation of three new norditerpenoid alkaloids, uncinatine B-D together with known virescenine from Delphinium uncinatum. Chemical structures for all the isolated norditerpenoids (14) were established using latest spectroscopic techniques. The isolated undescribed compounds along with known virescenine were testified for their acetylcholinesterase inhibitory activity supported by docking analyses. Molecular docking simulation showed that the isolated compounds (14) were observed to adhered in the active site of AChE with docking scores ? 13.5322 (1), ?11.8173 (2), ?12.4240 (3) and ? 8.9352 (4) respectively. Overall results demonstrated that these natural norditerpenoids compounds were found as selective inhibitors of AChE. This is the first report regarding the use of bioactive ingredients of Delphinium uncinatum in testing against Alzheimer's disease.  相似文献   

2.
The phytochemicals can play complementary medicine compared to synthetic drugs considering their natural origin, safety, and low cost. Phytochemicals hold a key position for the expansion of drug development against corona viruses and need better consideration to the agents that have already been shown to display effective activity against various strains of corona viruses. In this study, we performed molecular docking studies on potential forty seven phytochemicals which are SARS-CoV-1 Mpro inhibitors to identify potential candidate against the main proteins of SARS-CoV-2. In Silico Molecular docking studies revealed that phytochemicals 16 (Broussoflavan A), 22 (Dieckol), 31 (Hygromycin B), 45 (Sinigrin) and 46 (Theaflavin-3,3′-digallate) exhibited excellent SARS-CoV-2 Mpro inhibitors. Furthermore, supported by Molecular dynamics (MD) simulation analysis such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of gyration (Rg) and H-bond interaction analysis. We expect that our findings will provide designing principles for new corona virus strains and establish important frameworks for the future development of antiviral drugs.  相似文献   

3.
Four new gallotannins, maplexins F–I (14), two new phenolic glycosides, rubrumosides A–B (5,6), and eleven known compounds were isolated from red maple (Acer rubrum) bark. Their structures were elucidated based on spectroscopic analysis. The maplexins contained three galloylated derivatives attached to different positions of 1,5-anhydro-glucitol and were 10–20 fold more potent α-glucosidase inhibitors than the clinical drug, Acarbose (IC50=7–16 vs 161 μM), in vitro. These results support previous data suggesting that gallotannins are the main contributors to the α-glucosidase inhibitory activities of maple plant part extracts and that three substituents on the 1,5-anhydro-glucitol moiety are important for activity.  相似文献   

4.
5.
Neurodegenerative diseases have complex etiology and pose a challenge to scientists to develop simple and cost-effective synthetic compounds as potential drug candidates for such diseases. Here, we report an extension of our previously published in silico screening, where we selected four new compounds as AChE inhibitors. Further, based on favorable binding possess, MD simulation and MMGBSA, two most promising compounds (3a and 3b) were selected, keeping in view the ease of synthesis and cost-effectiveness. Due to the critical role of BChE, LOX and α-glucosidase in neurodegeneration, the selected compounds were also screened against these enzymes.The IC50 values of 3a against AChE and BChE found to be 12.53 and 352.42 μM, respectively. Moderate to slight inhibitions of 45.26 % and 28.68 % were presented by 3a against LOX and α-glucosidase, respectively, at 0.5 mM. Insignificant inhibitions were observed with 3b against the four selected enzymes. Further, in vivo trial demonstrated that 3a could significantly diminish AChE levels in the mice brain as compared to the control. These findings were in agreement with the histopathological analysis of the brain tissues. The results corroborate that selected compounds could serve as a potential lead for further development and optimization as AChE inhibitors to achieve cost-effective anti-Alzheimer’s drugs.  相似文献   

6.
We have recently explored novel class of potentially anti-breast cancer active enamidines in which four molecules 4a-c and 4h showed higher anticancer activity compared to standard drug doxorubicin. As a part of extension of this work, we have further evaluated in silico cheminformatic studies on bioactivity prediction of synthesized series of enamidines using mole information. The normal cell line study of four lead compounds 4a-c and 4h against African green monkey kidney vero strain further revealed that the compounds complemented good selectivity in inhibition of cancer cells. The in silico bioactivity and molecular docking studies also revealed that the compounds have significant interactions with the drug targets. The results reveal that enamidine moieties are vital for anti-breast cancer activity as they possess excellent drug-like characteristics, being potentially good inhibitors of cyclin dependent kinases7 (CDK7).  相似文献   

7.
Background: Currently, only two drugs are recommended for treatment of infection with Trypanosoma cruzi, the etiologic agent of Chagas’ disease. These compounds kill the trypomastigote forms of the parasite circulating in the bloodstream, but are relatively ineffective against the intracellular stage of the parasite life cycle. Neither drug is approved by the FDA for use in the US. The hypoxanthine phosphoribosyltransferase (HPRT) from T. cruzi is a possible new target for antiparasite chemotherapy. The crystal structure of the HPRT in a conformation approximating the transition state reveals a closed active site that provides a well-defined target for computational structure-based drug discovery.Results: A flexible ligand docking program incorporating a desolvation correction was used to screen the Available Chemicals Directory for inhibitors targeted to the closed conformation of the trypanosomal HPRT. Of 22 potential inhibitors identified, acquired and tested, 16 yielded Ki’s between 0.5 and 17 μM versus the substrate phosphoribosylpyrophosphate. Surprisingly, three of eight compounds tested were effective in inhibiting the growth of parasites in infected mammalian cells.Conclusions: This structure-based docking method provided a remarkably efficient path for the identification of inhibitors targeting the closed conformation of the trypanosomal HPRT. The inhibition constants of the lead inhibitors identified are unusually favorable, and the trypanostatic activity of three of the compounds in cell culture suggests that they may provide useful starting points for drug design for the treatment of Chagas’ disease.  相似文献   

8.
Histone deacetylases (HDACs) are key regulators of gene expression and have emerged as crucial therapeutic targets for cancer. Among the HDACs, inhibition of HDAC8 enzyme has been reported to be a novel strategy in the treatment of female-specific cancers. Most of the HDAC inhibitors discovered so far inhibit multiple HDAC isoforms causing toxicities in the clinic thus limiting their potential. Therefore, the discovery of isoform-selective HDAC8 inhibitors is highly desirable. In the present study, a combination of ligand and structure based drug design tools were utilized to build a statistically significant pharmacophore based 3D QSAR model with statistical parameters R2: 0.9964, and Q2: 0.7154, from a series of 31 known HDAC8 inhibitors. Top 1000 hits obtained from Virtual screening of Phase database were subjected to docking studies against HDAC8. Top 100 hits obtained were redocked into HDAC Class I (HDAC 1,2,3) and Class II isoforms (HDAC 4, 6) and rescored with XP Glide Score. Based on fitness score, XP glide score and interacting amino acid residues, five HDAC8 inhibitors (15) were selected for in vitro studies. The HDAC8 activity assay followed by enzyme kinetics clearly indicated Compounds 1, 2 and 3 to be potent HDAC8 selective inhibitors with IC50 of 126 pM, 112 nM, and 442 nM respectively. These compounds were cytotoxic to HeLa cells where HDAC8 is overexpressed but not to normal cells, HEK293. Also, they were able to induce apoptosis by modulating Bax/Bcl2, cleavage of PARP and release of Cytochrome C. Molecular Dynamics simulations observed most favorable interaction patterns and presented a rationale for the activities of the identified compounds. Selectivity against HDAC8 was due to exploitation of the architectural difference in the acetate release channel among class I HDAC isoforms.  相似文献   

9.
In modern drug designing, molecular docking is routinely used for understanding drug-receptor interaction. In the present study six imidazole derivatives containing substituted pyrazole moiety (2a,b and 4ad) were synthesized. Structures of the newly synthesized compounds were characterized by spectral studies. Compounds were screened for their antibacterial activity. Compound 4c was found to be potent antimicrobial against Pseudomonas aeruginosa at concentrations of 1 and 0.5 mg/mL compared to standard drug Streptomycin. All the compounds were subjected to molecular docking studies for the inhibition of the enzyme l-glutamine: d-fructose-6-phosphate amidotransferase[GlcN-6-P] (EC 2.6.1.16). The in silico molecular docking study results showed that, all the synthesized compounds having minimum binding energy and have good affinity toward the active pocket, thus, they may be considered as good inhibitor of GlcN-6-P synthase.  相似文献   

10.
Dihydrofolate reductase (DHFR) is an important enzyme for de novo synthesis of nucleotides in Plasmodium falciparum and it is essential for cell proliferation. DHFR is a well known antimalarial target for drugs like cycloguanil and pyrimethamine which target its inhibition for their pharmacological actions. However, the clinical efficacies of these antimalarial drugs have been compromising due to multiple mutations occurring in DHFR that lead to drug resistance. In this background, we have designed 22 s -triazine compounds using the best five parameters based 3D-QSAR model built by using genetic function approximation. In-silico designed compounds were further filtered to 6 compounds based upon their ADME properties, docking studies and predicted minimum inhibitory concentrations (MIC). Out of 6 compounds, 3 compounds were synthesized in good yield over 95% and characterized using IR, 1HNMR, 13CNMR and mass spectroscopic techniques. Parasitemia inhibition assay was used to evaluate the antimalarial activity of s -triazine compounds against 3D7 strain of P. falciparum. All the three compounds (7, 13 and 18) showed 30 times higher potency than cycloguanil (standard drug). It was observed that compound 18 was the most active while the compound 13 was the least active. On the closer inspection of physicochemical properties and SAR, it was observed that the presence of electron donating groups, number of hydrogen bond formation, lipophilicity of ligands and coulson charge of nitrogen atom present in the triazine ring enhances the DHFR inhibition significantly. This study will contribute to further endeavours of more potent DHFR inhibitors.  相似文献   

11.
Five new polyketides including two benzopyranones (1 and 2), one isochroman (3) and two anthraquinone-citrinin derivatives (4 and 5) were isolated from the sea fan-derived fungus Penicillium citrinum PSU-F51 together with thirteen known compounds. The structures were determined by spectroscopic methods. The anthraquinone-citrinin derivatives are rare natural products. Compound 4 displayed moderate antibacterial activity against both Staphylococcus aureus and methicillin-resistant S. aureus with equal MIC values of 16 μg/mL, while the known coniochaetone A displayed moderate antifungal activity against Candida albicans with MIC value of 16 μg/mL.  相似文献   

12.
The p53 protein, also called guardian of the genome, plays a critical role in the cell cycle regulation and apoptosis. This protein is frequently inactivated in several types of human cancer by abnormally high levels of its negative regulator, mouse double minute 2 (MDM2). As a result, restoration of p53 function by inhibiting p53-MDM2 protein–protein interaction has been pursued as a compelling strategy for cancer therapy. To date, a limited number of small-molecules have been reported as effective p53−MDM2 inhibitors. X-ray structures of MDM2 in complex with some ligands are available in Protein Data Bank and herein, these data have been exploited to efficiently identify new p53-MDM2 interaction antagonists through a hierarchical virtual screening strategy. For this purpose, the first step was aimed at compiling a focused library of 686,630 structurally suitable compounds, from PubChem database, similar to two known effective inhibitors, Nutlin-3a and DP222669. These compounds were subjected to the subsequent structure-based approaches (quantum polarized ligand docking and molecular dynamics simulation) to select potential compounds with highest binding affinity for MDM2 protein. Additionally, ligand binding energy, ADMET properties and PAINS analysis were also considered as filtering criteria for selecting the most promising drug-like molecules. On the basis of these analyses, three top-ranked hit molecules, CID_118439641, CID_60452010 and CID_3106907, were found to have acceptable pharmacokinetics properties along with superior in silico inhibitory ability towards the p53-MDM2 interaction compared to known inhibitors. Molecular docking and molecular dynamics results well confirmed the interactions of the final selected compounds with critical residues within p53 binding site on the MDM2 hydrophobic clefts with satisfactory thermodynamics stability. Consequently, the new final scaffolds identified by the presented computational approach could offer a set of guidelines for designing promising anti-cancer agents targeting p53-MDM2 interaction.  相似文献   

13.
《Arabian Journal of Chemistry》2020,13(12):9179-9195
Multi-target EGFR, HER2, VEGFR-2 and PDGFR is an improved strategy for the treatment of solid tumors. This work deals with synthesis of an array of new 6-benzoyl benzimidazole derivatives utlizing1-(6-benzoyl-2-(3,4-dimethoxyphenyl)-1H benzo[d] imidazol-1-yl)propan-2-one (1) as a starting compound. The new compounds were screened as cytotoxic agents against cervical cancer cells (Hela) and Doxorubicin served as a reference drug. Most of the tested compounds showed promising anticancer activity in addition to their safety towards the normal cell line. The most potent candidates were evaluated as EGFR, HER2, PDGFR-β and VEGFR2 inhibitors in comparison to Erlotinib. Compounds 9 and 13 exhibited promising suppression effects. Also, the latter compounds exhibited their ability to induce cellular apoptosis alongside cell cycle arrest at the G2/M phase and accumulation of cells in pre-G1 phase. Molecular docking analysis suggested that compounds 2c, 3f, 9, 12 and 13 tightly interacts with the amino acid residues in the active binding site of HER2 kinase.  相似文献   

14.
The binding modes of well known MurD inhibitors have been studied using molecular docking and molecular dynamics (MD) simulations. The docking results of inhibitors 1-30 revealed similar mode of interaction with Escherichia coli-MurD. Further, residues Thr36, Arg37, His183, Lys319, Lys348, Thr321, Ser415 and Phe422 are found to be important for inhibitors and E. coli-MurD interactions. Our docking procedure precisely predicted crystallographic bound inhibitor 7 as evident from root mean square deviation (0.96 Å). In addition inhibitors 2 and 3 have been successfully cross-docked within the MurD active site, which was pre-organized for the inhibitor 7. Induced fit best docked poses of 2, 3, 7 and 15/2Y1O complexes were subjected to 10 ns MD simulations to determine the stability of the predicted binding conformations. Induce fit derived docked complexes were found to be in a state of near equilibrium as evident by the low root mean square deviations between the starting complex structure and the energy minimized final average MD complex structures. The results of molecular docking and MD simulations described in this study will be useful for the development of new MurD inhibitors with high potency.  相似文献   

15.
16.
Based on the active site of Candida albicans lanosterol 14α-demethylase (CACYP51), novel triazole compounds structurally different from the current triazole drugs were designed and synthesized. In vitro antifungal activities showed that compounds 10,11, 16 and 20 exhibited strong activities. In addition, compounds 10,11 and 16 also displayed certain activities against fluconazole-resistant fungi.  相似文献   

17.
Nowadays, different approaches have been pursued with the intent to develop sulfonamide-like carbonic anhydrase inhibitors that possess better selectivity profiles toward the different human isoforms of the enzyme. Here, we used conventional 3D-QSAR methods, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA, to construct three-dimensional quantitative structure-activity relationship (3D-QSAR) models for benzenesulfonamide derivatives as human carbonic anhydrase (hCA) II/IX inhibitors. The theoretical models had good reliability (R2>0.75) and predictability (Q2>0.55), and the contour maps could graphically present the contributions of the force fields for activity and identify the structural divergence between human carbonic anhydrase II inhibitors and human carbonic anhydrase IX inhibitors. Consequently, we explored the selectivity of inhibitor for human carbonic anhydrase II and IX through molecular docking, and the difference of activity coincides with the potential binding mode well. According to the results of the predicted values and the molecule docking, we found that the inhibitors published in the literature had stronger inhibition on the hCA IX; based on the theoretical models, we designed seven new compounds with good potential activity and reasonably good ADMET profile, which could selectively inhibit hCA IX. Molecular Dynamics Simulation showed that newly-designed compound D7 had good selectivity on hCA IX. The findings from 3D-QSAR and docking studies maybe helpful in the rational drug design of isoform-selective inhibitors.  相似文献   

18.
α-Glucosidase enzyme is a therapeutic target for diabetes mellitus and its inhibitors play a vital role in the treatment of this disease. A new series of aryl-oxadiazole Schiff bases (118) were synthesized and evaluated for α-glucosidase inhibitory potential. Fifteen compounds 18, 1113, and 1518 showed excellent inhibition with IC50 values ranging from 0.30 ± 0.2 to 35.1 ± 0.80 µM as compared to the standard inhibitor acarbose (IC50 = 38.45 ± 0.80 µM), nonetheless, the remaining compounds were found to have moderate activity. Among the series, compounds 7 (IC50 = 0.30 ± 0.2 μM) with hydroxy groups at phenyl rings on either side of the oxadiazole ring was identified as the most potent inhibitor of α-glucosidase. The molecular docking studies were conducted to understand the binding mode of active inhibitors with the active site of enzyme and results supported the experimental data.  相似文献   

19.
Anethum sowa L. has been used as a spice herb in the Asian and European culinary systems to add flavour and taste. The studied plant has diverse folkloric medicinal value. Present study was designed to isolate phytochemicals from the hexane, chloroform and ethyl acetate extracts of the roots by various chromatographic techniques. Based on spectral analysis (IR, LC–MS, NMR) the isolated compounds were identified as physcione (1), β-sitosterol (2), stigmasterol (3), 2-oxo-3-propyl-2H-chromene-7-carboxylic acid (4), bergapten (5), 3-ethyl-7-hydroxy-2H-chromen-2-one (6) and graveolone (7). The mentioned compounds have been isolated for the first time from the roots part of the plant. Based on extensive literature review, physcione and bergapten were inferred to exhibit crucial bioactivities including inhibitory efficacy against various forms of cancer. Accordingly, in the present research approach molecular docking investigations of the isolated phytochemicals have been robustly executed with different oncogenes that have been reported to be actively involved in various forms of carcinoma. In silico investigations encompassing molecular docking analysis and drug-likeness profiling was executed to estimate the potential therapeutic tendencies of the phytochemicals targeted towards effective cancer therapy. Current investigation offers meaningful know-how pertaining to potential anticancer activities of the phytochemicals extracted from the roots of Anethum sowa L. and might open up new revenues towards effective drug development against cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号