首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The author studies the 2D isentropic Euler equations with the ideal gas law. He exhibits a set of smooth initial data that give rise to shock formation at a single point near the planar symmetry. These solutions to the 2D isentropic Euler equations are associated with non-zero vorticity at the shock and have uniform-in-time 1 3-H¨older bound. Moreover, these point shocks are of self-similar type and share the same profile, which is a solution to the 2D self-similar Burgers equation. The proof of the solutions, following the 3D construction of Buckmaster, Shkoller and Vicol (in 2023), is based on the stable 2D self-similar Burgers profile and the modulation method.  相似文献   

2.
In this paper, we investigate a multidimensional nonisentropic hydrodynamic (Euler-Poisson) model for semiconductors. We study the convergence of the nonisentropic Euler-Poisson equation to the incompressible nonisentropic Euler type equation via the quasi-neutral limit. The local existence of smooth solutions to the limit equations is proved by an iterative scheme. The method of asymptotic expansion and energy methods are used to rigorously justify the convergence of the limit.  相似文献   

3.
We investigate the discontinuities of normal derivatives on characteristics and on trajectories, which arise in nonisentropic gas flow computations. Such computations require knowledge of the relationships between the derivative discontinuities. A specific feature of the numerical solution of the Euler equations is noticed while investigating the effects associated with the appearance of vorticity. In real cases (unsteady flow, flow past a body, nonhomogeneous medium) the derivative of entropy has a discontinuity along the normal to the trajectory, and this effect should be taken into consideration in numerical work. The discontinuity of the entropy derivative may be obtained from relationships linking the discontinuities of the derivatives of fluid-dynamic functions. These relationships are derived from the dynamic consistency conditions of the Euler equations. In this article we derive relationships linking the discontinuities of the normal derivatives on characteristics and trajectories for functions describing particle velocities, the velocity of sound, and entropy.  相似文献   

4.
The aim of this paper is to show how solutions to the one-dimensional compressible Euler equations can be approximated by solutions to an enlarged hyperbolic system with a strong relaxation term. The enlarged hyperbolic system is linearly degenerate and is therefore suitable to build an efficient approximate Riemann solver. From a theoretical point of view, the convergence of solutions to the enlarged system towards solutions to the Euler equations is proved for local in time smooth solutions. We also show that arbitrarily large shock waves for the Euler equations admit smooth shock profiles for the enlarged relaxation system. In the end, we illustrate these results of convergence by proposing a numerical procedure to solve the enlarged hyperbolic system. We test it on various cases.  相似文献   

5.
The zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock is investigated. It is shown that when the heat ε→ 0 (see (1.3)), if the solution of the corresponding Euler equations is piecewise smooth with shock wave satisfying the Lax entropy condition, then there exists a smooth solution to the Navier-Stokes equations, which converges to the piecewise smooth shock solution of the Euler equations away from the shock discontinuity at a rate of ε. The proof is given by a combination of the energy estimates and the matched asymptotic analysis introduced in [3].  相似文献   

6.
We are concerned with global entropy solutions to the relativistic Euler equations for a class of large initial data which involve the interaction of shock waves and rarefaction waves. We first carefully analyze the global behavior of the shock curves, the rarefaction wave curves, and their corresponding inverse curves in the phase plane. Based on these analyses, we use the Glimm scheme to construct global entropy solutions to the relativistic Euler equations for the class of large discontinuous initial data.  相似文献   

7.
The quasi-neutral limit of the multi-dimensional non-isentropic bipolar Euler-Poisson system is considered in the present paper. It is shown that for well-prepared initial data the smooth solution of the nonisentropic bipolar Euler-Poisson system converges strongly to the compressible non-isentropic Euler equations as the Debye length goes to zero.  相似文献   

8.
We are concerned with global entropy solutions to the relativistic Euler equations for a class of large initial data which involve the interaction of shock waves and rarefaction waves. We first carefully analyze the global behavior of the shock curves, the rarefaction wave curves, and their corresponding inverse curves in the phase plane. Based on these analyses, we use the Glimm scheme to construct global entropy solutions to the relativistic Euler equations for the class of large discontinuous initial data.Received: May 23, 2004  相似文献   

9.
We study the nonlinear stability of viscous shock waves for the Cauchy problem of one-dimensional nonisentropic compressible Navier–Stokes equations for a viscous and heat conducting ideal polytropic gas. The viscous shock waves are shown to be time asymptotically stable under large initial perturbation with no restriction on the range of the adiabatic exponent provided that the strengths of the viscous shock waves are assumed to be sufficiently small. The proofs are based on the nonlinear energy estimates and the crucial step is to obtain the positive lower and upper bounds of the density and the temperature which are uniformly in time and space.  相似文献   

10.
We show the short-time existence and nonlinear stability of vortex sheets for the nonisentropic compressible Euler equations in two spatial dimensions, based on the weakly linear stability result of Morando and Trebeschi (2008) [20]. The missing normal derivatives are compensated through the equations of the linearized vorticity and entropy when deriving higher-order energy estimates. The proof of the resolution for this nonlinear problem follows from certain a priori tame estimates on the effective linear problem in the usual Sobolev spaces and a suitable Nash–Moser iteration scheme.  相似文献   

11.
研究二维无黏性无热传导Boussinesq方程组和三维轴对称不可压Euler方程组光滑解的增长情况,找各种区域使其上的方程组有快增长的解。对Boussinesq方程组,通过选取初始温度和速度的一个分量,可以把方程去耦为两部分。从关于涡量的部分求出涡量、速度场和使结论成立的区域,从关于温度的部分,可见温度的高阶导的增长仅依赖于速度场的一个分量。通过适当选取该分量,得到温度高阶导有指数增长的全局光滑解。对轴对称Euler方程组做类似的处理,适当选取速度场的径向分量,可把方程组去耦,最终得到一类光滑区域,在其上方程组有指数增长全局光滑解。该研究把Chae、Constantin、Wu对一个二维锥形区域上无黏性无热传导Boussinesq方程的结果,推广到一类光滑区域上, 并把他们的方法应用到三维轴对称不可压Euler方程组, 得到了类似的结果。  相似文献   

12.
We prove consistency, stability, and convergence of a point vortex approximation to the 3-D incompressible Euler equations with smooth solutions. The 3-D algorithm we consider here is similar to the corresponding 3-D vortex blob algorithm introduced by Beale and Majda; see [3]. We first show that the discretization error is second-order accurate. Then we show that the method is stable in lp norm for the particle trajectories and in w?1.p norm for discrete vorticity. Consequently, the method converges up to any time for which the Euler equations have a smooth solution. One immediate application of our convergence result is that the vortex filament method without smoothing also converges.  相似文献   

13.
研究了三维可压等熵Euler方程Cauchy问题光滑解的整体存在性.如果初值是一个常状态的小扰动并且初速度的旋度等于零,证明了三维可压等熵Euler方程Cauchy问题光滑解的整体存在性.  相似文献   

14.
A considerable amount of information is currently available on the creation and propagation of large solitary waves in marine straits. In order to be able to analyze such data we develop a theoretical model, extending previous one-dimensional models to the case of straits with varying width and depth, and nonvanishing vorticity. Starting from the Euler equations for a three-dimensional homogeneous incompressible inviscid fluid, we derive, in the quasi-one-dimensional long-wave and shallow-water approximation, a generalized KadomtsevPetviashvili (GKP) equation, together with its appropriate boundary conditions. In general, the coefficients of this equation depend on the form of the bottom and on the vorticity; the sides of the straits figure only in the boundary conditions. Under certain restrictions on the vorticity and the geometry of the straits we reduce the GKP equation to one of several completely integrable partial differential equations, in order to study the evolution of solitons which originate in the straits.  相似文献   

15.
We establish the existence and uniqueness of transonic flows with a transonic shock through a two-dimensional nozzle of slowly varying cross-sections. The transonic flow is governed by the steady, full Euler equations. Given an incoming smooth flow that is close to a constant supersonic state (i.e., smooth Cauchy data) at the entrance and the subsonic condition with nearly horizontal velocity at the exit of the nozzle, we prove that there exists a transonic flow whose downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. This problem is approached by a one-phase free boundary problem in which the transonic shock is formulated as a free boundary. The full Euler equations are decomposed into an elliptic equation and a system of transport equations for the free boundary problem. An iteration scheme is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for the elliptic equation and the system of transport equations with the Schauder fixed point argument. The uniqueness of transonic nozzle flows is also established by employing the coordinate transformation of Euler-Lagrange type and detailed estimates of the solutions.  相似文献   

16.
The Boltzmann equation which describes the time evolution of a large number of particles through the binary collision in statistics physics has close relation to the systems of fluid dynamics, that is, Euler equations and Navier-Stokes equations. As for a basic wave pattern to Euler equations, we consider the nonlinear stability of contact discontinuities to the Boltzmann equation. Even though the stability of the other two nonlinear waves, i.e., shocks and rarefaction waves has been extensively studied, there are few stability results on the contact discontinuity because unlike shock waves and rarefaction waves, its derivative has no definite sign, and decays slower than a rarefaction wave. Moreover, it behaves like a linear wave in a nonlinear setting so that its coupling with other nonlinear waves reveals a complicated interaction mechanism. Based on the new definition of contact waves to the Boltzmann equation corresponding to the contact discontinuities for the Euler equations, we succeed in obtaining the time asymptotic stability of this wave pattern with a convergence rate. In our analysis, an intrinsic dissipative mechanism associated with this profile is found and used for closing the energy estimates.  相似文献   

17.
We investigate linear wave propagation in non-uniform medium under the influence of gravity. Unlike the case of constant properties medium here the linearized Euler equations do not admit a plane-wave solution. Instead, we find a “pseudo-plane-wave”. Also, there is no dispersion relation in the usual sense. We derive explicit analytic solutions (both for acoustic and vorticity waves) which, in turn, provide some insights into wave propagation in the non-uniform case.  相似文献   

18.
We consider the periodic problem for 2‐fluid nonisentropic Euler‐Poisson equations in semiconductor. By choosing a suitable symmetrizers and using an induction argument on the order of the time‐space derivatives of solutions in energy estimates, we obtain the global stability of solutions with exponential decay in time near the nonconstant steady‐states for 2‐fluid nonisentropic Euler‐Poisson equations. This improves the results obtained for models with temperature diffusion terms by using the pressure functions pν in place of the unknown variables densities nν.  相似文献   

19.
We study nonlinear free‐surface rotational waves generated through the interaction of a vertically sheared current with a topography. Equivalently, the waves may be generated by a pressure distribution along the free surface. A forced Korteweg–de Vries equation (fKdV) is deduced incorporating these features. The weakly nonlinear, weakly dispersive reduced model is valid for small amplitude topographies. To study the effect of gradually increasing the topography amplitude, the free surface Euler equations are formulated in the presence of a variable depth and a sheared current of constant vorticity. Under constant vorticity, the harmonic velocity component is formulated in a simplified canonical domain, through the use of a conformal mapping which flattens both the free surface as well as the bottom topography. Critical, supercritical, and subcritical Froude number regimes are considered, while the bottom amplitude is gradually increased in both the irrotational and rotational wave regimes. Solutions to the fKdV model are compared to those from the Euler equations. We show that for rotational waves the critical Froude number is shifted away from 1. New stationary solutions are found and their stability tested numerically.  相似文献   

20.
We study the two-dimensional pressure-gradient system, a subsystem of the two-dimensional compressible Euler system. We consider the problem of interaction of four rarefaction waves which is one case of two-dimensional Riemann problems. It is known that, when two planar waves interact, there exists a smooth solution in the interaction region. In this paper, we establish the existence of a smooth solution in the hyperbolic domain of determinacy, in which we encounter the interaction of simple and planar waves and shock prevention in simple waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号