首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

2.
Porous monoliths are well‐known stationary phases in high‐performance liquid chromatography and capillary electrochromatography. Contrastingly, their use in other types of separation methods such as gas or supercritical fluid chromatography is limited and scarce. In particular, very few studies address the use of monolithic columns in supercritical fluid chromatography. These are limited to silica‐based monoliths and will be covered in this review together with an underlying reason for this trend. The application of monoliths in gas chromatography has received much more attention and is well documented in two reviews by Svec and Kurganov published in 2008 and 2013, respectively. The most recent studies, covered in this review, build on the previous findings and on further understanding of the influence of preparation conditions on porous properties and chromatographic performance of poly(styrene‐co‐divinylbenzene), polymethacrylate, and silica‐based monolithic columns while expanding to polymer‐based monoliths with incorporated metal organic frameworks and to vinylized hybrid silica monoliths. In addition, the potential application of porous layer open tubular monolithic columns in low‐pressure gas chromatography will be addressed.  相似文献   

3.
SVEC Frantisek 《色谱》2005,23(6):585-594
 Modern porous monoliths have been conceived as a new class of stationary phases for high performance liquid chromatography (HPLC) in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are prepared using simple processes carried out in an external mold (inorganic monoliths) or within the confines of the column (organic monoliths and all capillary columns). These methods afford macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, the convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, the monolithic columns perform well even at very high flow rates. The applications of monolithic capillary columns are demonstrated on numerous separations in the HPLC mode.  相似文献   

4.
Commercially available silica‐based monolithic columns Chromolith RP‐8e, Chromolith RP‐18, and Chromolith HR RP‐18, and polymer‐based monolithic columns ProSwift RP‐1S, ProSwift RP‐2H, and ProSwift RP‐3U varying in pore size and bonded phase have been tested for the fast separation of selected sets of analytes. These mixtures of analytes included small molecules (uracil, caffeine, 1‐phenylethanol, butyl paraben, and anthracene), acylated insulins, and intact proteins (ribonuclease A, cytochrome C, transferrin, apomyoglobin, and thyroglobulin), and covered wide range of chemistries and sizes. Small molecules were well separated with a height equivalent to theoretical plate of 11–26 μm using silica‐based monolithic columns, while organic polymer‐based monoliths excelled in the fast sub 1 min baseline separations of large molecules. A peak capacity of 37 was found for separation of acylated insulins on Chromolith columns using a 3 min gradient at a flow rate of 3 ml/min. Poor recovery of proteins from Chromolith columns and significant peak tailing of small molecules using ProSwift columns were the major obstacles in using monolithic columns in those applications.  相似文献   

5.
Monolithic capillary columns based on pentaerythritol triacrylate and pentaerythritol tetraacrylate were synthesized using different compositions of polymerization mixtures and different polymerization conditions. The impact of porogen type and porogen/monomer ratio on the porosity of synthesized monoliths was investigated. Porogen type appears to be the main factor influencing the separating properties of the monolithic sorbent. Using optimal polymerization conditions (porogen type, porogen/monomer ratio, reaction temperature, time etc.) monoliths with a porous structure optimized for polymer separations can be obtained. The monolithic capillary columns containing porous sorbents with optimized porosity are capable of separating 10 to 12 polystyrene standards in one chromatographic run utilizing both size exclusion chromatography and hydrodynamic chromatography separation mechanisms.  相似文献   

6.
本文对高效液相整体柱在药物分离分析方面的应用进行了综述.主要介绍了以烷氧基硅烷为主要原料,采用溶胶-凝胶法制备的硅胶整体柱,由于其具有微米级通孔结构和大的比表面积,他们在高效、快速分离小分子物质方面得到广泛地应用.对于聚合物整体柱,主要介绍了包括分子印迹聚合物在内的有机聚合物整体柱在药物分离、生物样品的处理等方面的应用.  相似文献   

7.
Summary Performance was evaluated of silica based commercial monolithic rod-like columns in liquid chromatography of synthetic polymers under limiting conditions of enthalpic interactions (LC LC). LC LC employs the barrier effect of the pore permeating and therefore slowly eluting small molecules toward the pore excluded, fast eluting macromolecules. Phase separation (precipitation) barrier action was applied in present study. The barrier was created either by the narrow pulse of an appropriate nonsolvent injected into the column just before the sample solution (LC LC of insolubility – LC LCI) or by the eluent itself. In the latter case, the polymer sample was dissolved and injected in a good solvent (LC LC of solubility – LC LCS). In LC LCI, polymer species cannot break thru the nonsolvent zone while in LC LCS they cannot enter eluent, which is their precipitant. Therefore, polymer species keep moving in the zone of their original solvent. Macromolecules eluting under the LC LC mechanism leave the column in the retention volume (VR) roughly corresponding to VR of the low molar mass substances and can be efficiently separated from the polymer species non-hindered by the barrier action. The known advantages of monoliths were confirmed. From the point of view of LC LCI and LC LCS the most important quality of monolithic columns represents their excellent permeability, which allows both working at high flow rates and injecting very high (in the range of 5%) sample concentrations. Monolithic column tolerate also extremely high molar mass samples (M>10,000 kg · mol−1). On the other hand, the mesopores (separation pores) of the tested monoliths exhibited rather small volume and wide size distribution. These shortcomings partially impair the permeability advantage of monoliths because in order to obtain high LC LC separation selectivity a tandem of several monolithic columns must be applied. Presence of large mesopores also reduces applicability of monolithic columns for molar masses below about 50 kg · mol−1 because VRs of polymers eluted behind the barrier are similar to that of freely eluting species. The non- negligible break-thru phenomenon was observed for the very high polymer molar masses largely eluting behind the barrier. It is assumed that the fraction of very large mesopores present in the monoliths or association/microphase separation of macromolecules may be responsible for this phenomenon. This is why the presently marketed SiO2 monolithic columns are mainly suitable for the fast purification of the LC LC eluting macromolecules from the polymeric admixtures non-hindered by the barrier-forming liquid. Still, monolithic columns have large potential in the LC LCI and LC LCS procedures provided size (effective diameter) of the mesopores can be reduced and their volume increased.  相似文献   

8.
有机聚合物整体柱的制备与应用的研究进展   总被引:1,自引:0,他引:1  
尹俊发  魏晓奕  杨更亮 《色谱》2007,25(2):142-149
整体柱具有通透性能良好和传质速度快等特点,可实现快速、高效、高通量的分离,近年来已引起人们的热切关注。聚合物整体柱是其中应用最为广泛的一种,它是由单体、交联剂、致孔剂和引发剂等通过原位聚合得到的连续均一的棒状聚合物,具有取材广泛,使用pH范围比较宽,生物兼容性好等特点,通过化学修饰,可以用作多种色谱模式的固定相。该文主要综述了2003年至2006年期间有关聚合物整体柱制备和应用的研究进展。  相似文献   

9.
This review draws attention to the use of chiral monolithic silica HPLC columns for the enantiomeric separation and determination of chiral compounds. Properties and advantages of monolithic silica HPLC columns are also highlighted in comparison to conventional particle-packed, fused-core, and sub-2-µm HPLC columns. Nano-LC capillary monolithic silica columns as well as polymeric-based and hybrid-based monolithic columns are also demonstrated to show good enantioresolution abilities. Methods for introducing the chiral selector into the monolithic silica column in the form of mobile phase additive, by encapsulation and surface coating, or by covalent functionalization are described. The application of molecular modeling methods to elucidate the selector–selectand interaction is discussed. An application for enantiomeric impurity determination is also considered.  相似文献   

10.
Guiochon G 《Journal of chromatography. A》2007,1168(1-2):101-68; discussion 100
Monolithic media have been used for various niche applications in gas or liquid chromatography for a long time. Only recently did they acquire a major importance in high-performance column liquid chromatography (HPLC). The advent of monolithic silica standard- and narrow-bore columns and of several families of polymer-based monolithic columns has considerably changed the HPLC field, particularly in the area of narrow-bore columns. The origin of the concept, the differences between their characteristics and those of traditional packed columns, their advantages and drawbacks, the methods of preparation of monoliths of different forms, and the current status of the field are reviewed. The actual and potential performance of monolithic columns are compared with those of packed columns. Monolithic columns have considerable advantages, which makes them most useful in many applications of liquid chromatography. They are extremely permeable and offer a high efficiency that decreases slowly with increasing flow velocity.  相似文献   

11.
A simple capillary flow porometer (CFP) was assembled for through-pore structure characterization of monolithic capillary liquid chromatography columns in their original chromatographic forms. Determination of differential pressures and flow rates through dry and wet short capillary segments provided necessary information to determine the mean diameters and size distributions of the through-pores. The mean through-pore diameters of three capillary columns packed with 3, 5, and 7 μm spherical silica particles were determined to be 0.5, 1.0 and 1.4 μm, with distributions ranging from 0.1 to 0.7, 0.3 to 1.1 and 0.4 to 2.6 μm, respectively. Similarly, the mean through-pore diameters and size distributions of silica monoliths fabricated via phase separation by polymerization of tetramethoxysilane (TMOS) in the presence of poly(ethylene glycol) (PEG) verified that a greater number of through-pores with small diameters were prepared in columns with higher PEG content in the prepolymer mixture. The CFP system was also used to study the effects of column inner diameter and length on through-pore properties of polymeric monolithic columns. Typical monoliths based on butyl methacrylate (BMA) and poly(ethylene glycol) diacrylate (PEGDA) in capillary columns with different inner diameters (i.e., 50–250 μm) and lengths (i.e., 1.5–3.0 cm) were characterized. The results indicate that varying the inner diameter and/or the length of the column had little effect on the through-pore properties. Therefore, the through-pores are highly interconnected and their determination by CFP is independent of capillary length.  相似文献   

12.
Preparation methods of monolithic silica columns for HPLC including the surface modification were reviewed. Chemical modification methods recently reported to obtain stationary phases for reversed-phase (RP), chiral, ion-exchange, and hydrophilic interaction chromatography (HILIC) separations were discussed. Recent results related to preparation methods of monolithic silica were also covered. The characteristics and properties of silica monoliths and some applications of monolithic silica columns for different analytical and bioanalytical fields will be commented.  相似文献   

13.
李子凌  李娜  赵腾雯  张子扬  王曼曼 《色谱》2021,39(3):229-240
聚合物整体柱是由单体、交联剂、引发剂和致孔剂在模具中通过原位聚合而成的棒状整体.与传统的填充式固相萃取柱相比,聚合物整体柱吸附剂凭借制备简单、柱压低、传质快及pH使用范围宽泛等优点已广泛应用于食品分析、生物医药和环境卫生等领域的前处理中.然而,通常由于聚合方式难以控制,聚合物整体柱在制备过程中容易产生颗粒堆积、孔道不均...  相似文献   

14.
The application of a new silica‐based, monolithic‐type HPLC‐column for fast separations is presented. The column is prepared according to a new sol‐gel process, which is based on the hydrolysis and polycondensation of alkoxysilanes in the presence of water soluble polymers. The method leads to “rods” made of a single piece of porous silica with a defined pore structure, i. e. macro‐ and mesopores. The main feature of silica rod columns is a higher total porosity, about 15% higher than of conventional particulate HPLC columns. The resulting column pressure drop is therefore much lower, allowing operation at higher flow rates including flow gradients. Consequently, HPLC analysis can be performed much faster, as it is demonstrated by various applications.  相似文献   

15.
李晶  朱岩 《色谱》2007,25(2):179-182
整体固定相是近年来新兴的一种多孔性固定相介质,它在离子态及极性化合物的分离中得到了越来越广泛的重视。本文就离子色谱领域整体固定相的发展以及最新的研究动向进行了综述,讨论了离子色谱整体固定相的优点、分类以及在分离分析离子态物质方面的应用等。  相似文献   

16.
A comparison is made between the efficiency of microparticulate capillary columns and silica and polymer-based monolithic capillary columns in the pressure-driven (high-performance liquid chromatography) and electro-driven (capillary electrochromatography) modes. With packed capillary columns similar plate heights are possible as with conventional packed columns. However, a large variation is observed in the plate heights for individual columns. This can only be explained by differences in the quality of the packed bed. The minimum plate height obtained with silica monolithic capillary columns in the HPLC mode is approximately 10 microm, which is comparable to that of columns packed with 5-microm particles. The permeability of wide-pore silica monoliths was found to be much higher than that of comparable microparticulate columns, which leads to much lower pressure drops for the same eluent at the same linear mobile phase velocity. For polymer-based monolithic columns (acrylamide, styrene/divinyl benzene, methacrylate, acrylate) high efficiencies have been found in the CEC mode with minimum plate heights between 2 and 10 microm. However, in the HPLC mode minimum plate heights in the range of 10 to 25 microm have been reported.  相似文献   

17.
In order to elucidate the role of the flow-through characteristics with regard to the column performance in high-performance liquid chromatography (HPLC) native and n-octadecyl bonded monolithic silica rods and columns, respectively of 100 mm length and 4.6 mm ID with mesopores in the range between 10 and 25 nm and macropores in the range between 0.7 and 6.0 μm were examined by mercury intrusion/extrusion, scanning electron microscopy, image analysis and permeability. The obtained data of the flow-through pore sizes and porosity values as well as surface-to-volume ratio of the stationary phase skeleton enabled to predict their influence to the chromatographic separation efficiency. Our data demonstrate that mercury porosimetry is a reliable technique to obtain all the characteristic parameters of the flow-through pores of silica monoliths. An important result of our examination was that the surface-to-volume ratio of monolithic silica skeletons had more significant impact to the separation process, rather than the average flow-through pore sizes. We could also show the essential differences between the particulate and monolithic stationary phases based on theoretical computation. The results, obtained from other characterization methods also indicated the structural complexity of monolithic silica samples. Permeability of columns is a generally applicable parameter to characterize all chromatographic phases no matter the chemistry or format. The correlation coefficient obtained for mercury intrusion and permeability of water was 0.998, though our investigation revealed that the surface modification is more likely influencing the obtained results. Further, the assumption of the cylindrical morphology of flow-through pores is not relevant to the investigated monolithic silica columns. These results on the morphology of the flow-through pores and of the skeletons were confirmed by the image analysis as well. Our main finding is that the flow-through pore sizes are not relevant for the estimation of the chromatographic separation efficiency of monolithic silica columns.  相似文献   

18.
整体柱离子色谱的研究进展   总被引:1,自引:0,他引:1  
陈倩  于泓 《分析测试学报》2011,30(6):705-712
该文介绍了离子色谱的分类,整体柱的分类、制备及特点,并以此为依据归纳总结了常规整体柱在离子色谱中的应用和毛细管整体柱在毛细管离子色谱中的应用,其中包括硅胶基质整体柱和聚合物基质整体柱,评述并展望了整体柱离子色谱的发展前景.  相似文献   

19.
A novel, facile, and efficient one‐step copolymerization strategy was developed for the preparation of β‐cyclodextrin (β‐CD) methacrylate monolithic columns using click chemistry. The novel mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer was synthesized by a click reaction between propargyl methacrylate and mono‐6‐azido‐β‐CD, and then monolithic columns were prepared through a one‐step in situ copolymerization of the mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD monomer and ethylene dimethacrylate. The physicochemical properties and column performance of the fabricated monolithic columns were characterized by elemental analysis, SEM, and micro‐HPLC. Satisfactory column permeability, efficiency, and separation performance were obtained for the optimized poly(mono‐(1H‐1,2,3‐triazol‐4‐ylmethyl)‐2‐methylacryl‐β‐CD‐co‐ethylene dimethacrylate) monolithic columns. Additionally, typical hydrophilic interaction chromatography retention behavior was observed on the monoliths at high acetonitrile content in the mobile phase. Although the enantioselectivity of our monolithic columns did not meet the level of other reported β‐CD monolithic columns, this one‐step strategy based on click chemistry still provides an interesting and effective model as it offers the possibility to easily prepare related novel CD methacrylate monoliths through a one‐step copolymerization strategy.  相似文献   

20.
硅胶基质高效液相色谱填料研究进展   总被引:2,自引:0,他引:2  
高效液相色谱(HPLC)不仅是一种有效的分析分离手段,也是一种重要的高效制备分离技术。色谱柱是HPLC系统的核心,不同性能的填料是HPLC广泛应用的基础。硅胶是开发最早、研究最为深入、应用最为广泛的HPLC固定相基质,其制备方法主要有喷雾干燥法、溶胶-凝胶法、聚合诱导胶体凝聚法及模板法等。近年来,亚2μm小粒径硅胶、核-壳型硅胶、双孔径硅胶、介孔性硅胶、有机杂化硅胶等新型硅胶应用于HPLC并取得了色谱分离技术的飞速发展,例如基于亚2μm填料的超高压液相色谱技术、基于核-壳型填料的快速分离技术、基于杂化硅胶填料的高温液相色谱技术等。硅胶经表面化学键合、聚合物包覆等有机改性可制得先进的大分子限进填料、温敏性填料、手性填料等,大大扩展了HPLC的应用范围。本文对液相色谱用硅胶的制备方法、改性与修饰方法以及硅胶基质固定相的评价方法加以系统综述,概述了新型硅胶在HPLC中的应用进展,并对硅胶基质填料的发展方向与应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号