首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Intelligent hydrogels are materials with abilities to change their chemical nature or physical structure in response to external stimuli showing promising potential in multitudinous applications. Especially, photo-thermo coupled responsive hydrogels that are prepared by encapsulating photothermal agents into thermo-responsive hydrogel matrix exhibit more attractive advantages in biomedical applications owing to their spatiotemporal control and precise therapy. This work summarizes the latest progress of the photo-thermo coupled responsive hydrogel in biomedical applications. Three major elements of the photo-thermo coupled responsive hydrogel, i.e., thermo-responsive hydrogel matrix, photothermal agents, and construction methods are introduced. Furthermore, the recent developments of these hydrogels for biomedical applications are described with some selected examples. Finally, the challenges and future perspectives for photo-thermo coupled responsive hydrogels are outlined.  相似文献   

2.
Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.  相似文献   

3.
DNA hydrogels have unique properties, such as specific identifiable molecular structures, programmable self-assembly, and excellent biocompatibility, which have led to increasing researches in the field of nanomaterials and biomedical over the past two decades. However, effective methods to regulate the microstructure of DNA hydrogels still lack, which limits their applications in tissue engineering. By introducing DNA scaffolds into rolling circle amplification (RCA) products and implementing rapid self-assembly strategy, we can produce a regulable new type scaffold-net DNA hydrogel in a short time. Scaffolds concentration and RCA time can regulate the microcharacteristics and physical properties of hydrogels. Scaffold-net DNA hydrogels will be a promising bionic platform for the studies of cancer cell metastatic and microenvironment biophysics.  相似文献   

4.
In recent years, there has been an increased interest in injectable, in situ crosslinking hydrogels due to their minimally invasive application and ability to conform to their environment. Current in situ crosslinking chitosan hydrogels are either mechanically robust with poor biocompatibility and limited biodegradation due to toxic crosslinking agents or the hydrogels are mechanically weak and undergo biodegradation too rapidly due to insufficient crosslinking. Herein, the authors developed and characterized a thermally-driven, injectable chitosan-genipin hydrogel capable of in situ crosslinking at 37 °C that is mechanically robust, biodegradable, and maintain high biocompatibility. The natural crosslinker genipin is utilized as a thermally-driven, non-toxic crosslinking agent. The chitosan-genipin hydrogel's crosslinking kinetics, injectability, viscoelasticity, swelling and pH response, and biocompatibility against human keratinocyte cells are characterized. The developed chitosan-genipin hydrogels are successfully crosslinked at 37 °C, demonstrating temperature sensitivity. The hydrogels maintained a high percentage of swelling over several weeks before degrading in biologically relevant environments, demonstrating mechanical stability while remaining biodegradable. Long-term cell viability studies demonstrated that chitosan-genipin hydrogels have excellent biocompatibility over 7 days, including during the hydrogel crosslinking phase. Overall, these findings support the development of an injectable, in situ crosslinking chitosan-genipin hydrogel for minimally invasive biomedical applications.  相似文献   

5.
Programmed deformations are widespread in nature, providing elegant paradigms to design self‐morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principle and the structure‐deformation relationship. One crucial step is to construct heterogeneous structures in a facile yet effective way. Herein, we provide a focus review on different deformation modes and corresponding structural features of hydrogels. Photolithography is a versatile approach to control the outer shape of the hydrogel and spatial distribution of the component in the hydrogel, endowing the patterned hydrogels with programmed internal stress and thus controllable deformations. Specifically, cooperative deformations take place in periodically patterned hydrogels with in‐plane gradients, and multiple morphing structures are formed in one patterned hydrogel using selective preswelling to direct the buckling of each unit. The structural control strategy and deformation principles should be applicable to other materials with broad applications in diverse areas.  相似文献   

6.
Hydrogels and nanofibers have been firmly established as go-to materials for various biomedical applications. They have been mostly utilized separately, rarely together, because of their distinctive attributes and shortcomings. However, the potential benefits of integrating nanofibers with hydrogels to synergistically combine their functionalities while attenuating their drawbacks are increasingly recognized. Compared to other nanocomposite materials, incorporating nanofibers into hydrogel has the distinct advantage of emulating the hierarchical structure of natural extracellular environment needed for cell and tissue culture. The most important technological aspect of developing “nanofiber-composite hydrogel” is generating nanofibers made of various polymers that are cross-linked and short enough to maintain stable dispersion in hydrated environment. In this review, recent research efforts to develop nanofiber-composite hydrogels are presented, with added emphasis on nanofiber processing techniques. Several notable examples of implementing nanofiber-composite hydrogels for biomedical applications are also introduced.  相似文献   

7.
Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel exhibits a response to external temperature variation and shrinks in volume abruptly as the temperature is increased above its lower critical solution temperature. It has great potential applications in biomedical fields. A rapid response rate is essential, especially when this material is designed as an on-off switch for targeted drug delivery. However, due to the appearance of a thick, dense skin layer on the hydrogel surface during the shrinking process, the deswelling rate of conventional PNIPAAm gels is low. In this article, a novel method is proposed to modify the surface morphology of PNIPAAm gel, in which the swollen gels are frozen at low temperature (-20 degrees C). The scanning electron micrographs revealed that a fishnet-like skin layer appeared on the surfaces of the cold-treated gels. Dramatically rapid deswelling was achieved with the cold-treated gels since the fishnet-like structure with numerous small pores prevented the formation of a dense, thick skin layer during the deswelling process, which commonly occurs in normal PNIPAAm hydrogels. Prolonging the cold treatment from 1 day to 10 days resulted in a slightly higher deswelling rate. Rearrangement of the hydrogel matrix structure during the freezing process might contribute to the formation of the fishnet-like skin layer. The water uptake of the hydrogels increased nearly in proportion to the square root of time, indicating that the reswelling rate of hydrogels was controlled predominantly by water diffusion into the network. However, there were no significant differences in the equilibrated swelling ratio and reswelling kinetics at room temperature (22 degrees C) between normal gels and cold-treated gels, which implied that cold treatment did not change bulk porosity and gel tortuosity much.  相似文献   

8.
水凝胶具有良好的生物相容性和生物可降解性,其结构呈三维网状结构,与细胞外基质相似,在药物释放和组织工程等领域具有广阔的应用前景,被广泛地用于生物制药、生物材料和医学等领域。流变学可以描述材料的流动特性和力学性能,水凝胶的粘弹响应对材料内部结构的变化也非常敏感,因此流变行为被视为研究水凝胶的一种重要方法。本文综述了流变学方法在水凝胶研究中的应用,介绍了水凝胶流变学的研究方法,讨论了影响水凝胶流变学特征的因素,并展望了水凝胶流变学的发展前景。  相似文献   

9.
Hydrogels were the first biomaterials designed for clinical use. Their discovery and applications as soft contact lenses and implants are presented. This early hydrogel research served as a foundation for the expansion of biomedical polymers research into new directions: design of stimuli sensitive hydrogels that abruptly change their properties upon application of an external stimulus (pH, temperature, solvent, electrical field, biorecognition) and hydrogels as carriers for the delivery of drugs, peptides, and proteins. Finally, pathways to self‐assembly of block and graft copolymers into hydrogels of precise 3D structures are introduced. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5929–5946, 2009  相似文献   

10.
Physical hydrogels based on poly(vinyl alcohol), PVA, have an excellent safety profile and a successful history of biomedical applications. However, highly inhomogeneous and macroporous internal organization of these hydrogels as well as scant opportunities in bioconjugation with PVA have largely ruled out micro- and nanoscale control and precision in materials design and their use in (nano)biomedicine. To address these shortcomings, herein we report on the assembly of PVA physical hydrogels via "salting-out", a noncryogenic method. To facilitate sample visualization and analysis, we employ surface-adhered structured hydrogels created via microtransfer molding. The developed approach allows us to assemble physical hydrogels with dimensions across the length scales, from ~100 nm to hundreds of micrometers and centimeter sized structures. We determine the effect of the PVA molecular weight, concentration, and "salting out" times on the hydrogel properties, i.e., stability in PBS, swelling, and Young's modulus using exemplary microstructures. We further report on RAFT-synthesized PVA and the functionalization of polymer terminal groups with RITC, a model fluorescent low molecular weight cargo. This conjugated PVA-RITC was then loaded into the PVA hydrogels and the cargo concentration was successfully varied across at least 3 orders of magnitude. The reported design of PVA physical hydrogels delivers methods of production of functionalized hydrogel materials toward diverse applications, specifically surface mediated drug delivery.  相似文献   

11.
In this work, hydrogels of polyacrylamide (or PAAm) with confined lyotropic liquid crystal (potassium laurate-decanol-water, KL-DeOH-H2O) (or LLC) were synthesized. The hydrogels were characterized by polarized optical microscopy (POM), refractometry, optical transmission, scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS). Besides these techniques, the hydrophilicity of hydrogels was characterized by the degree of swelling. Based on POM, it was observed that the texture of the birefringent hydrogels obtained depends on their cross-linking density, and that it is formed soon after hydrogel synthesis. Refractometry results indicated an behavior antagonist to that obtained for the system constituted by thermotropic liquid crystal inserted into the PAAm lattice in relation to the dependence of Δn on the AAm concentration and the optical transmittance. SEM micrographs show that birefringent hydrogels present rougher surface when compared to the surface of PAAm hydrogels. For the same AAm concentrations, it was observed that the hydrogels with confined LLC present larger swelling values (Q) when compared to those of PAAm hydrogels. The loss of water by birefringent hydrogels is twofold slower than that of PAAm hydrogels. Hydrogels formed by PAAm and lyotropic liquid crystal synthesized in this work can be potentially used in optical devices.  相似文献   

12.
凝胶材料是生物系统的重要组成物质,在生物模拟、仿生等方面具有重大意义.最近凝胶方面的研究日益受到关注[1,2],高分子凝胶体系的研究也得到深入开展[3,4].在智能水凝胶、凝胶特性基础研究和医用凝胶材料等领域已取得了较大进展.  相似文献   

13.
We have designed and synthesized a new hydrogelator Nap-FFGEY (1), which forms a supramolecular hydrogel. A kinase/phosphatase switch is used to control the phosphorylation and dephosphorylation of the hydrogelator and to regulate the formation of supramolecular hydrogels. Adding a kinase to the hydrogel induces a gel-sol phase transition in the presence of adenosine triphosphates (ATP) because the tyrosine residue is converted into tyrosine phosphate by the kinase to give a more hydrophilic molecule of Nap-FFGEY-P(O)(OH)(2) (2); treating the resulting solution with a phosphatase transforms 2 back to 1 and restores the hydrogel. Electron micrographs of the hydrogels indicate that 1 self-assembles into nanofibers. Subcutaneous injection of 2 in mice shows that 80.5 +/- 1.2% of 2 turns into 1 and results in the formation of the supramolecular hydrogel of 1 in vivo. This simple biomimetic approach for regulating the states of supramolecular hydrogels promises a new way to design and construct biomaterials.  相似文献   

14.
各向异性水凝胶在外界的响应刺激下可以具有不同的反应机制与驱动过程. 本文综述了近期基于PNIPAM水凝胶智能响应驱动器的设计方法, 总结了多种各向异性结构对驱动性能的影响, 并对该领域所面临的挑战进行了讨论.  相似文献   

15.
Surfaces that are spatially functionalized with intelligent hydrogels, especially at the micro‐ and nanoscale, are of high interest in the diagnostic and therapeutic fields. Conventional methods of the semiconductor industry have been successfully employed for the patterning of hydrogels for various applications, but methods for fabricating precise 3 D patterns of hydrogels at the micro‐ and nanoscale over material surfaces remain limited. Herein, microcontact printing (µCP) followed by atom transfer radical polymerization (ATRP) was applied as a platform to synthesize temperature responsive poly(N‐isopropylacrylamide) hydrogels with varied network structures (e.g. different molecular weight crosslinkers) over gold surfaces. The XY control of the hydrogels was achieved using µCP, and the Z (thickness) control was achieved using ATRP. The controlled growth and the responsive behavior of hydrogels to temperature stimuli were characterized using Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy (AFM). The results demonstrate that this platform allows for the controlled growth of hydrogel nanostructures using the controlled ATRP mechanism. It is also shown that the molecular weight of the crosslinker affects the rate of hydrogel growth. These PNIPAAm‐based crosslinked hydrogel patterns were also demonstrated to have a temperature‐dependent swelling response. Using this technique, it is possible to synthesize responsive hydrogel patterns over various surfaces for potential applications in the biomedical field. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Peptides and polymers are the “elite” building blocks in hydrogel fabrication where the typical approach consists of coupling specific peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains aiming to obtain controlled cell responses (adhesion, migration, differentiation). However, the use of polymers and peptides as structural components for fabricating supramolecular hydrogels is less well established. Here, the literature on the design of peptide/polymer systems for self‐assembly into hybrid hydrogels, as either peptide‐polymer conjugates or combining both components individually, is reviewed. The properties (stiffness, mesh structure, responsiveness, and biocompatibility) of the hydrogels are then discussed from the viewpoint of their potential biomedical applications.  相似文献   

17.
Nanocomposite hydrogels based on carbon nanotubes (CNTs) are known to possess remarkable stiffness, electrical, and thermal conductivity. However, they often make use of CNTs as fillers in covalently cross‐linked hydrogel networks or involve direct cross‐linking between CNTs and polymer chains, limiting processability properties. Herein, nanocomposite hydrogels are developed, in which CNTs are fillers in a physically cross‐linked hydrogel. Supramolecular nanocomposites are prepared at various CNT concentrations, ranging from 0.5 to 6 wt%. Incorporation of 3 wt% of CNTs leads to an increase of the material's toughness by over 80%, and it enhances electrical conductivity by 358%, compared to CNT‐free hydrogel. Meanwhile, the nanocomposite hydrogels maintain thixotropy and processability, typical of the parent hydrogel. The study also demonstrates that these materials display remarkable cytocompatibility and support cell growth and proliferation, while preserving their functional activities. These supramolecular nanocomposite hydrogels are therefore promising candidates for biomedical applications, in which both toughness and electrical conductivity are important parameters.  相似文献   

18.
《Mendeleev Communications》2023,33(4):556-558
It has been found that the encapsulation of high molecular weight hyaluronic acid in a biologically relevant silica hydrogel matrix provides its accelerated penetration into the skin compared to free acid. The developed hybrid hydrogels, in which high molecular weight hyaluronic acid retains its pronounced anti-inflammatory properties and strong hydrating effect, can become the basis for new, more effective soft formlations for the treatment of inflammatory skin diseases, as well as for products used in the beauty industry. It has been shown that the penetration of hyaluronic acid from the hybrid hydrogels depends on the conditions of their synthesis, the average molecular weight and the loading of the acid.  相似文献   

19.
Thermoresponsive hybrid nanocellulose hydrogels were prepared from a mixture of oxidized nanocellulose and elastin-like polypeptide (ELP). Positively charged ELP was used as a polymeric crosslinker for conjugation with negatively charged nanocellulose. Hydrogel formation was triggered by a simple increase in temperature, and the hydrogel was reversibly returned to the liquid phase by decreasing temperature. Surface potential measurement confirmed the electrostatic properties of oxidized nanocellulose and ELP molecules. The surface morphology of hydrogels was observed by atomic force microscopy and field emission-scanning electron microscopy. Conformational changes in the ELP/nanocellulose hybrid were characterized by circular dichroism. The ELP/nanocellulose hybrid hydrogel was noncytotoxic and suitable for encapsulating cells, indicating its potential for biomedical applications.  相似文献   

20.
A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号