首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
理解析氧反应(OER)电催化剂活性位点的活性来源是开发高效电催化剂的关键。然而,由于催化剂结构-活性关系的复杂性,发展高效电催化剂仍然是一个至关重要的挑战。本文设计了不同Co-N-C催化剂构型,包括单原子、双原子和团簇,并通过第一性原理计算建立了析氧反应构效关系。结果表明,Co-N4由于金属中心的高配位数和与所有析氧反应中间体的适中吸附能,表现出最佳反应性,过电位为0.37V。双原子和团簇的活性来源于催化剂自身与反应中间体相结合的高度配位结构。此外,本文基于Co-N4构型讨论了影响OER活性的其他因素,其中弱金属-金属相互作用可以通过调节Co-O的反键能级优化含氧中间体的吸附降低反应过电位。随后,根据建立的结构-吸附-活性关系,对火山图进行外推,得到CoNi-type4体系OER的过电位为0.23V。本文研究揭示了Co-N-C催化剂OER活性的起源,建立了基于原子尺度的Co-N-C催化剂的构效关系,有助于理解M-N-C基催化剂的高性能,并促进高效OER催化剂的设计。  相似文献   

2.
大气中CO2浓度不断上升导致大量的环境问题,如冰川融化、温室效应、极端天气等,利用电化学方法将CO2经还原反应(CO2RR)转化为有价值的燃料或化学品是解决该问题的可行策略.由于CO2具有稳定的化学键(C=O,806 kJ mol-1),需设计具有优异活性和高选择性的催化剂.近年研究结果表明,过渡金属锚定在N掺杂碳载体上而制得的催化剂(M-N-C)具有较高的原子利用率、独特的活性金属中心电子结构以及存储量丰富,因而被认为是CO2还原为CO的理想电催化剂.目前已经提出了多种方法来制备M-N-C催化剂,包括原子层沉积、基于金属-有机骨架的离子交换、基于载体修饰策略的吸附固化和受限热解.然而,这些方法存在制备过程繁琐或难以大规模生产的问题.同时,采用高温热解制备的M-N-C催化剂,金属活性位点易被其致密的结构包裹,难以完全暴露出来.但有效的活性位点对M-N-C的催化性能起着至关重要的作用,因此有必要研制一种简便、高效的方法来抑制金属原子聚集.超薄二维碳骨架已被证...  相似文献   

3.
本研究采用[Fe(CN)6]3-阴离子交换2-甲基咪唑再于空气气氛下退火衍生的策略,制备了一种负载在氮掺杂中空纳米笼碳骨架上的Fe掺杂Co3O4电催化剂(Fe-Co3O4/NC),用于电催化OER。XRD和HRTEM表征证实了Fe掺人Co3O4的晶格中。XPS表征明确了Fe引入后Co价态升高,这是基于Co2+/Co3+和Fe3+的价电子构型诱导的电子由Co2+/Co3+向Fe3+的转移,这会促使Co位点在OER过程中衍生为CoOOH活性物种,作为真正的电催化活性中心,这也被OER稳定性测试后的HRTEM和XPS表征所证实。电化学性能测试显示,该电催化剂的OER过电位仅有275 mV且能够在100 mA/cm2的电流密度下稳定维持20 h,兼具优异的电催化活性和稳...  相似文献   

4.
自从国际社会提出“碳达峰、碳中和”目标以来,人们越来越意识到节约资源、保护环境、开发新能源的必要性.氢能(H2)作为最具竞争力的清洁能源之一,引起了研究人员的广泛关注.电化学全解水被认为是一种利用风能和太阳能产生氢气的有效技术,其主要由两个半反应组成:析氧反应(OER)和析氢反应(HER).然而,在实际工业化生产过程中阳极反应动力学OER慢,能量转换效率低,阴极反应稳定性差,导致经济效益不理想,因此,急需开发和探索耐久高效的电催化剂.过渡金属硫化物因具有独特的结构特征、丰富的活性位点和可调控的电子性质和组成,而被广泛用于电化学全解水制氢.本文综述了过渡金属硫化物的合成方法,一般包括:水热(溶剂热)法、电化学沉积法、液相剥离法、化学气相沉积法和球磨法,并概述了不同方法的基本概念、合成步骤以及优缺点.总结了近年用于电催化领域中典型单一硫化物(包括MoS2,WS2,Co3S4,Ni3S2等)材料的合成方法和机理,明确了S元素在整个电催化过程...  相似文献   

5.
氢能作为一种潜在的能源载体,有望取代化石燃料,解决当今社会的能源需求和环境问题.质子交换膜电解水(PEMWE)技术因其工作电流密度大、氢气纯度高和系统响应迅速等优点,能够有效地弥补可再生能源波动性等缺点,被认为是一种利用可再生能源制氢的可持续手段.但其阳极氧析出反应(OER)为四电子/质子转移过程,反应动力学缓慢,同时强氧化性和强酸性环境会对阳极催化剂的产生腐蚀,导致稳定性差,因此亟需开发高效且稳定的催化剂.研究发现,无定型氧化铱材料中的特殊缺陷结构可显著提升其催化酸性OER的活性,但该结构也会加速反应过程中铱的溶解,导致催化剂稳定性降低,严重限制了其实际应用.本文采用高价金属掺杂的策略,利用高价金属元素与氧的强成键作用,对无定型氧化铱的整体结构及活性位点起到优化且稳定的作用.首先,采用改性的亚当斯熔融法制备了金属钽掺杂的无定型氧化铱:350-Ta@IrOx,400-Ta@IrOx,450-Ta@IrOx(350,400和450代表样品分别在350,400和450℃烧结),并用于催化酸性OER;作为对比,制备了无掺杂的无定型氧化铱:350-I...  相似文献   

6.
杂原子掺杂可以调节电子结构以调整中间体吸附并优化反应路径,是设计高效CO2还原反应(CO2RR)催化剂的有应用前景的方法.B原子是常用的掺杂剂,引入B原子可以有效打破*COOH和OCHO*中间体的吉布斯自由能线性关系,并且可以通过与CO2中O原子结合来增强CO2吸附能力.B掺杂碳材料、单金属和金属氧化物的研究结果表明, B原子掺杂催化剂的CO2RR活性和/或选择性有明显提高,然而多数报道的单个活性位点的B掺杂催化剂仅表现出在相对狭窄的电位范围内的CO2RR高性能,设计制备CO2RR的宽电位高选择性催化剂仍是巨大挑战.研究表明,合金化是提供多种类的活性位点相互协调和增强催化剂固有活性,进而改善CO2RR性能并调节产物分布的可行策略.引入B原子到合金中以调节电子结构,最终优化关键中间体吸附的活性位点,对于寻找具有宽电位窗口的先进催化剂具有重要意义.本文提出了一种通过B掺杂调节CuIn合金电子结构以实现宽电位高选择性的...  相似文献   

7.
尖晶石钴矿(例如ACo2O4,其中A=Mn, Fe, Co, Ni, Cu或Zn的阳离子取代)是一种精确调控其电子结构/性质,并因此改善相应的电催化水分解析氧(OER)性能的有前途的策略.然而,有关它的基本原理和机制尚未完全理解.为了确定尖晶石氧化物在OER中的作用,已有实验和理论报道.例如, Prabu发现Ni3+离子取代Ni Co2O4的八面体位点可以显着提高OER性能;Hutchings报道OER性能提高源自Co3O4八面体Co3+的活性位;Wei研究发现Mn Co2O4八面体位置的Mn3+离子是OER的活性位点.尽管多数研究没有对此给出清晰的解释,但这些研究清楚地表明,尖晶石氧化物对OER的电催化性能在很大程度上取决于过渡金属阳离子(A)的化合价态及其在尖晶石结构中的相应位点分布.本文旨在合成具有同种形貌的尖晶石ACo2  相似文献   

8.
析氧反应(OER)是金属-空气电池、电解水等绿色可再生能源转换与储存系统的核心反应,其复杂的4电子-质子耦合反应导致其动力学过程缓慢从而使得系统过电位较高,目前主要依赖于RuO2或IrO2贵金属催化剂提升其反应速率,但贵金属高成本和低稳定性严重限制其大规模应用.因此,开发高活性、高稳定性的廉价非贵金属催化剂具有重要的实际意义,已成为现阶段的研究热点.钼酸钴(CoMoO4)作为典型的ABO4型催化材料,不仅价格低廉、储量丰富,而且其双金属特性可构筑有效的活性位点提升OER反应动力学.前期研究发现,通过阴离子掺杂、氧空位工程、电子结构调控、表面修饰等策略可增强ABO4型催化剂的OER催化活性.特别是氧空位工程可调节过渡金属氧化物的电子结构,提高其导电性能,增加催化位点活性,从而提高过渡金属氧化物的催化性能.本文在石墨毡(GF)上原位生长CoMoO4纳米片,并提出一种简单的H2/Ar还原策略精确调控CoMoO4的氧化状...  相似文献   

9.
金属-空气二次电池在可再生电能的存储和转换方面具有广阔的应用前景.在金属-空气二次电池的空气侧,放电时发生氧还原反应(ORR),充电时发生氧析出反应(OER).然而, ORR和OER反应的动力学过程缓慢,因此限制了金属-空气二次电池的实际应用.因此,发展高性能ORR和OER电催化剂对金属-空气二次电池的发展尤为重要.目前,大多数的研究集中在ORR或OER的单功能电催化剂上,而关于双功能电催化剂的研究和综述相对较少.两个反应均具有较高的过电位和较缓慢的动力学过程,而且充电过程的高电压会导致ORR催化剂失活,反之亦然.因此,开发针对这两个反应均具有高活性和高稳定性的双功能电催化剂极具挑战性.近年来,研究者对具有低成本和高性能双功能电催化剂进行了探索.这些双功能电催化剂包括碳基材料,过渡金属材料和复合材料.双功能电催化剂可以通过提高本征活性和表观活性两种策略来提高其整体的活性.其中,本征活性与晶体结构和电子结构密切相关,即可以通过调节晶体结构和电子结构来提高其本征活性.例如,可以改变金属-氧键的强度、氧空位浓度等来调变电催化活性.在碳基材料中掺杂杂原子可以改变碳的电荷密度分布,从而实现对电催...  相似文献   

10.
NiFe基电催化剂在水氧化反应中已经得到了广泛研究,但是,基于多界面修饰对电催化析氧反应(OER)的研究仍然不足.本课题组开发了通过多种碳基界面工程的协同作用来提高NiFe基纳米电催化剂OER性能的方法.在碳纤维纸(CFP)上原位生长碳纳米管以改善CFP和NiFeOxHy之间的界面,同时采用碳复合NiFeOxHy的策略优化NiFeOxHy界面的电荷转移和电子结构.基于这种策略合成的NiFeOxHy-C/CNTs/CFP催化剂在电流密度10 mA cm-2条件下的过电位为202 mV,稳定时间达到72 h,表现出较好的水氧化性能,扫描电子显微镜、透射电子显微镜、场发射透射电子显微镜和X射线衍射等结果表明,CNTs提高了催化剂的分散度,从而暴露了更多的活性位点,碳掺杂改变了催化剂的晶态,导致催化剂无定形化.Raman光谱则证实了掺杂碳是以无定形碳和石墨碳的形态存在.电化学阻抗谱结果表明,碳界面修...  相似文献   

11.
为了研发高效、稳定的电解水催化剂,我们以氧空位和磷掺杂为基础,通过原位浸泡生长和两步热处理的方法,在泡沫铁上合成具有氧空位和磷掺杂的纳米花结构作为析氢反应(HER)和析氧反应(OER)双功能电催化剂。CoFe2O4已被报道为一种很有前途的OER和氧还原反应(ORR)电催化剂,然而CoFe2O4在HER中表现出电导率差、电催化反应慢的特性。CoFe2O4中氧空位(Ov)的形成可以有效调控催化剂表面的电子结构,有助于产生更多的缺陷和空位,从而提高OER的活性。随后,引入磷原子填充在空位中,制备的P-Ov-CoFe2O4/IF在碱性电催化测试中展现出优异的HER和OER性能,在10 mA·cm-2电流密度下HER和OER过电位仅为54和191 mV,Tafel斜率分别为57和54 mV·dec-1,并具有良好的循环稳定性。  相似文献   

12.
随着社会的快速发展,人类对能源的需求不断增加,化石能源的过度消耗造成了严重的环境污染和能源危机,引起全球各国的广泛关注.为解决这一问题,需要大力发展高效清洁的新能源转化装置.直接甲醇燃料电池和全水分解两种能源转化装置,因其高效率、低排放、低操作温度等优点,被认为是目前最具潜力的可再生能源.两种电化学体系能源转化过程中涉及的四个半反应分别是氧气还原反应(ORR)、甲醇氧化反应(MOR)、阴极氢气析出(HER)和阳极氧气析出(OER),而ORR和OER两个半反应由于动力学过程缓慢而成为甲醇燃料电池和全水分解两种装置转化效率的关键反应步骤,其中ORR反应过程中易发生两电子转移过程,生成中间产物,严重降低电流效率; OER反应涉及四电子转移和氧-氧键形成,相对于较易发生的二电子转移过程HER反应,反应动力学缓慢是影响转化效率的主要原因.因此,开发先进的电催化剂,尤其是高效ORR和OER催化剂,成为提高能源转化装置能量转化效率的关键.在过去十几年里,人们对基于贵金属铂、基于过渡金属及非金属纳米材料的电催化剂进行了充分研究并取得了重要进展,其中一维金属纳米材料(例如纳米线、纳米棒、纳米管等)因其具有独特的表面结构及物理和化学性能,表现出优越的电化学催化活性和较高的稳定性,在能源电催化领域具有潜在的应用价值.本文总结了一维金属纳米材料作为电催化剂应用于上述四种催化反应的研究进展,着重介绍了四种催化反应过程的反应机理、催化剂性能提升策略及其在催化反应过程中活性位的变化规律.首先对涉及到的四个半反应在不同电解质溶液中的反应过程和机理进行了详细介绍,并分别讨论几种反应在热力学和动力学过程上的主要障碍.然后通过近年来的相关研究进展,讨论了影响电催化剂催化活性的几种因素.其中,催化剂的组成、不同量或不同种类的异质原子掺杂往往会使金属催化剂的电子结构发生不同程度的改变,从而影响催化剂的性能.通常,催化剂的电化学活性面积越大,暴露出的活性位点越多,越容易使催化剂活性位点与反应物接触,从而提高催化活性及加速传质过程.因此,很大一部分工作致力于提高纳米结构催化剂的有效活性面积,用于电催化反应.另外,表面结构和晶面的调控可以控制纳米材料的电催化专一性和选择性,提高催化效率.而纳米材料的电子传输能力也会对其催化活性产生较大影响.最后总结了提高一维金属纳米电催化剂催化活性的有效策略,为进一步设计高性能电催化剂提供了参考.  相似文献   

13.
丁钰  苗博强  赵越  李富民  蒋育澄  李淑妮  陈煜 《催化学报》2021,42(2):271-278,后插16-后插17
近年来,基于析氧反应(OER)的电化学能量转换体系(如电化学制氢、金属空气电池、氮气电还原和二氧化碳电还原)日益受到人们的关注.各种过渡金属基(Mn,Ni,Co,Fe,Cu等)纳米材料(硫化物、氢氧化物、氧化物、磷化物和氮化物等)被认为是潜在的、可以代替贵金属的碱性OER催化剂.其中,高活性和低成本的Ni(OH)2基电催化剂被广泛关注.由于面积效应、结构效应、电子效应和协同效应等因素,Ni(OH)2基纳米材料的电化学活性与其形貌和化学成分密切相关.引入纳米尺寸的孔,不仅加快了传质,而且增加了边缘活性原子的数量,因而有利于活性的增强.超薄二维(2D)纳米片因具有独特的结构特征,可以为电催化反应提供充足的反应位点和低配位数的表面活性原子.杂原子的引入可以调节纳米材料的电子结构和几何结构以提高它们的电催化活性.本文提出了一种简单的混合氰胶水解策略,成功合成了Fe掺杂的Ni(OH)2纳米片(Ni(OH)2-Fe H-STs).氰胶前驱体骨架结构有助于形成超薄多孔的2D结构,而且,通过调节前驱体的浓度就可以获得一定镍铁原子比的产物.不同Fe含量的Ni(OH)2纳米片的OER活性测试结果表明,Ni/Fe比为3:1的Ni(OH)2-Fe H-STs-Ni3Fe1在碱性环境中具有最佳的OER活性.由于Ni(OH)2-Fe H-STs-Ni3Fe1的超薄2D结构使大多数金属原子暴露在表面,使原子利用率最大化.同时,超薄表面上高活性的低配位数的中心原子,可以作为催化OER的高活性中心.薄片上的孔隙有效地增加了高活性边缘原子的数量并且能够加速反应物和生成物的传质.XPS测试结果表明,Fe的引入显著改变了Ni的电子结构,提高了Ni(OH)2 H-STs的导电性,从而促进了电化学过程中NiIV活性物种的产生,进而改变其OER本征活性.三维镍泡沫(NF)可以防止负载纳米材料的聚集,提高转移反应物/产物的传质速率.因此,本文将Fe掺杂的Ni(OH)2纳米片直接生长在NF基底(简写为Ni(OH)2-Fe H-STs/NF).结果表明,NF基底的引入进一步提升导电性和增加传质.综上所述,由于具有高比表面积、丰富的活性原子、Fe/Ni原子之间的协同效应以及NF基底的高导电性和三维多孔特性,通过氰胶水解法获得的Ni(OH)2-Fe H-STs/NF在KOH溶液中表现出优异的OER活性,在10 mA cm^–2电流密度下过电位仅为200 mV,Tafel斜率为56 mV dec^?1,并且材料具有良好的稳定性.  相似文献   

14.
目前,为了有效解决电化学能量转化反应动力学过程缓慢和商业化应用等问题,需要大力提高催化剂的电催化活性和稳定性,并大幅降低贵金属催化剂的用量.通常,铂(Pt)基催化剂对燃料电池的氧还原反应(ORR)和水电解过程的氢析出反应(HER)表现出很高的活性.然而,对于高效的金属-空气电池和水电解装置,其中的氧析出反应(OER)则需要高活性的非Pt电催化剂来降低电化学过电位及提高其对高电位的耐受性.虽然相较于Pt催化剂,IrO2和RuO2等贵金属催化剂表现出了更高的OER活性,然而,它们的稳定性差,难以满足实际应用需求,严重阻碍了其在金属-空气电池和水电解中的应用.通常,Pt对OER的低效催化主要归因于在OER电催化过程中Pt与电解液直接接触,导致Pt表面快速被氧化,形成Pt氧化物(Pt+4O2和Pt+2O)层.形成的Pt氧化物对OER不起催化作用,从而降低了Pt的利用率和总的水电解效率.为了避免Pt表面的快速氧化,实现高的OER性能,我们将Pt金属纳米粒子有效地限域在超薄功能多孔碳层内....  相似文献   

15.
胡佳妮  张晓峰  肖娟  李如春  王毅  宋树芹 《催化学报》2021,42(12):2275-2286
电解水制氢因具有清洁高效的优点而被认为是大规模生产氢能最有希望的技术之一.然而,电解水半反应之一的析氧反应(OER)需经历复杂且动力学缓慢的4电子转移过程.加之热力学上的阻碍,OER实际需要的电位远大于1.23 V的理论值,导致其能耗高,限制了电解水的效率和商业化应用.因此,亟待开发高效的OER电催化剂.管状结构具有较高的比表面积、充分暴露的活性位点和丰富的短路径扩散通道,是一种理想的电催化结构.同时,Co3O4基材料因其制备容易、成本低和OER电催化学活性较高等特点,成为近年来电催化材料的研究热点.此外,非金属元素P的掺杂条件温和,并且可以有效改变过渡金属电子结构.因此,本文通过合理设计管状的Co3O4基电催化剂并进行P掺杂,尝试将形貌调控和元素改性的优势发挥到最大.为了解析影响生成管状结构的因素,本文通过控制变量法系统地研究了管状Ni/Co3O4的制备条件,包括阳离子种类和含量、添加剂种类和含量、阴离子种类等对催化剂形貌和性能的影响.表征结果表明,初始的乙酸钴镍氢氧化物棱柱对反应环境较为敏感,从而成为直接影响最终微米管状结构的关键因素.此外,对Ni/Co3O4微米管进行适量的P掺杂,能提高材料的电子传输性能和优化材料的电子结构;而且P的掺杂直接提高了样品中的M3+/M2+比例(M代表Co和Ni),而M3+是M基电催化材料的活性位点,这进一步增加了OER的活性位点进而提高其催化活性.总之,通过结构和成分的优化,得到了OER催化性能显著提高的微米管状P-Ni/Co3O4,其性能甚至超过了商业化RuO2电催化剂.  相似文献   

16.
孟鹏飞  张笑容  廖世军  邓怡杰 《化学进展》2022,34(10):2190-2201
原子级别分散的过渡金属和氮共掺杂碳基催化剂(M-Nx-C)具有反应活性好、选择性高、制备容易等优点,被认为是最有可能取代价格昂贵的铂催化剂用作燃料电池阴极的一类非贵金属催化剂。然而,该类催化剂在阴极侧氧还原反应过程中存在活性位点密度较低、耐久性不足的问题制约了其在燃料电池中的实际应用。研究表明,通过多种金属/非金属元素的掺杂调控活性位点的电子结构与空间构型可显著提升M-Nx-C催化剂的氧还原活性和稳定性,已成为掺杂碳基催化剂领域的热门研究课题。本文综述了近年来国内外在多种金属/非金属元素掺杂提升M-Nx-C碳基催化剂性能方面的主要研究工作,包括金属元素掺杂、非金属元素掺杂等研究。文章进一步总结和指出了M-Nx-C碳基催化剂面临的问题及挑战,并对其发展前景和未来研究方向进行了展望。  相似文献   

17.
双原子位点M-N-C催化剂是催化CO2还原反应(CO2RR)性能最佳的催化剂之一. 然而, 目前的研究主要集中于M-N-C活性中心原子类型的调控, 低估了活性位点的配位模式及分布对其催化性能的影响. 本文选取典型的双原子位点M-N-C催化剂(NiFe-N-C)为研究对象, 采用密度泛函理论方法探究了9种活性位点具有不同配位环境的NiFe-N-C催化剂电催化CO2RR的反应机理. 结果表明, 随着金属原子配位数、 双原子位点间距离的增加, M-N-C催化剂的稳定性、 催化CO2还原至CO的活性及抑制氢析出反应的选择性均呈现先升高后下降的趋势. 其中, 金属原子四配位且对称分布的NiFe-N-C-model 3催化剂, 因其双原子位点的强相互作用表现出最优的催化性能.  相似文献   

18.
氧析出(OER)是电解水、空气电池充电等电化学能量转换与储存过程中的关键反应.从原子尺度上认识反应机理和构效关系是高效OER电催化剂设计与应用的基础.本文概述密度泛函理论(DFT)在3d过渡金属(Mn、Fe、Co、Ni)氧化物及氢氧化物OER电催化材料中的研究进展,介绍DFT+U方法研究晶体结构变化、元素掺杂、缺陷形成及基底装载对催化性能的影响,总结催化剂性能提升策略,并讨论DFT+U方法在3d金属氧化物催化剂的设计和改良中的研究发展方向.  相似文献   

19.
以双氰胺、醋酸锌、钼酸铵、醋酸镉和硫化钠为原料,采用水热法合成了一系列Zn-Mo共掺杂CdS(Zn-Mo-CdS),并与g-C3N4组成异质结催化剂(Zn-Mo-CdS/g-C3N4)。采用X射线衍射光谱(XRD)、紫外-可见(UV-Vis)光谱、电感耦合等离子体-原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)、X光电子能谱(XPS)等分析手段对制备的催化剂进行了表征。结果表明, Zn-Mo-CdS与g-C3N4之间紧密结合并形成异质结,促进界面电荷迁移,抑制光生电子-空穴对的复合。以可见光下降解染料罗丹明B (RhB)为探针反应考察了催化剂性能。结果表明, Zn-Mo-CdS/g-C3N4异质结催化剂的光催化性能与单纯g-C3N4、Zn-Mo-CdS及双金属硫化物/g-C3N4异质结催化剂相比均有大幅度提高,质量比m(Zn-Mo-CdS)/m(g-C3N4) = 4 : 1时制备的异质结催化剂表现出最大的降解速率常数,是单纯g-C3N4和Zn-Mo-CdS的30倍和10倍。不仅Zn-Mo-CdS,其他三元金属复合硫化物如Mo-Ni-CdS和Ni-Sn-CdS与g-C3N4之间也能有效构筑异质结,促进电子-空穴对的分离和催化性能提升。  相似文献   

20.
本研究将单原子分散的Fe-N4位点锚定在氮掺杂空心多孔碳球上用于电催化氧还原反应,研究表明,所制备的FeSAs/HNCSs-800催化剂表现出优异的电催化氧还原性能,其起始电位为0.925 V,半波电位为0.867 V。球差电镜和同步辐射X射线吸收光谱证实了催化剂中存在高度分散的Fe-N4单原子位点。通过密度泛函理论计算证明单原子Fe-N4位点是氧还原反应有效的活性位点,其相邻的C缺陷可以有效调控单原子Fe的电子结构,进而提高电催化氧还原性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号