首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
As a promising candidate for the much-desired low power consumption spintronic devices, 2D magnetic van der Waals material also provides a versatile platform for the design and control of topological spin textures. In this work on WTe2/CrCl3 bilayer van der Waals heterostructures, a complete Néel-type skyrmion–bimeron–ferromagnet phase transition is demonstrated, accompanied by the evolution of the topological number. This cyclic transition, mediated by a perpendicular magnetic field, is largely driven by the competition between the out-of-plane magnetocrystalline anisotropy and magnetic dipole–dipole interaction. In the presence of a driving current, the Néel-type skyrmion gains a higher velocity yet larger skyrmion Hall angle, in comparison to the bimeron. By incorporating a ferroelectric CuInP2S6 monolayer as a substrate, writing and erasing of skyrmions may be regulated using a ferroelectric polarization. This work sheds light on a novel approach to the design and control of magnetic skyrmions on 2D van der Waals materials.  相似文献   

2.
Van der Waals heterostructures (vdWHs) based on 2D layered materials with selectable materials properties pave the way to integration at the atomic scale, which may give rise to fresh heterostructures exhibiting absolutely novel physics and versatility. This feature article reviews the state‐of‐the‐art research activities that focus on the 2D vdWHs and their optoelectronic applications. First, the preparation methods such as mechanical transfer and chemical vapor deposition growth are comprehensively outlined. Then, unique energy band alignments generated in 2D vdWHs are introduced. Furthermore, this feature article focuses on the applications in light‐emitting diodes, photodetectors, and optical modulators based on 2D vdWHs with novel constructions and mechanisms. The recently reported novel constructions of the devices are introduced in three primary aspects: light‐emitting diodes (such as single defect light‐emitting diodes, circularly polarized light emission arising from valley polarization), photodetectors (such as photo‐thermionic, tunneling, electrolyte‐gated, and broadband photodetectors), and optical modulators (such as graphene integrated with silicon technology and graphene/hexagonal boron nitride (hBN) heterostructure), which show promising applications in the next‐generation optoelectronics. Finally, the article provides some conclusions and an outlook on the future development in the field.  相似文献   

3.
Phase transition in nanomaterials is distinct from that in 3D bulk materials owing to the dominant contribution of surface energy. Among nanomaterials, 2D materials have shown unique phase transition behaviors due to their larger surface-to-volume ratio, high crystallinity, and lack of dangling bonds in atomically thin layers. Here, the anomalous dimensionality-driven phase transition of molybdenum ditelluride (MoTe2) encapsulated by hexagonal boron nitride (hBN) is reported. After encapsulation annealing, single-crystal 2H-MoTe2 transformed into polycrystalline Td-MoTe2 with tilt-angle grain boundaries of 60°-glide-reflection and 120°-twofold rotation. In contrast to conventional nanomaterials, the hBN-encapsulated MoTe2 exhibit a deterministic dependence of the phase transition on the number of layers, in which the thinner MoTe2 has a higher 2H-to-Td phase transition temperature. In addition, the vertical and lateral phase transitions of the stacked MoTe2 with different crystalline orientations can be controlled by inserted graphene layers and the thickness of the heterostructure. Finally, it is shown that seamless Td contacts for 2H-MoTe2 transistors can be fabricated by using the dimensionality-driven phase transition. The work provides insight into the phase transition of 2D materials and van der Waals heterostructures and illustrates a novel method for the fabrication of multi-phase 2D electronics.  相似文献   

4.
Controlling the conduction behavior of 2D materials is an important prerequisite to achieve their electronic and optoelectronic applications. However, most of the reported approaches are aware of the shortcomings of inflexibility and complexity, which limits the possibility of multifunctional integration. Here, taking advantage of van der Waals heterostructure engineering, a simple method to achieve a dynamically controlled binary channel in a semivertical MoTe2/MoS2 field effect transistor is proposed. It is enabled by the high switchability between tunneling and thermal transports through simply changing the sign of voltage bias. In addition, the proposed system allows for multifunctional integration of transistor with on/off ratio >107 and diode with rectification ratio >106. Moreover, the devices show screen capability to negative photoresponse effect that is widely observed in ambipolar materials, hence improving the photodetection reliability and sensitivity. This study broadens the functionalities of van der Waals heterostructures and opens up more possibilities to realize multifunctional devices.  相似文献   

5.
Near infrared (NIR) photodetectors based on 2D materials are widely studied for their potential application in next generation sensing, thermal imaging, and optical communication. Construction of van der Waals (vdWs) heterostructure provides a tremendous degree of freedom to combine and extend the features of 2D materials, opening up new functionalities on photonic and optoelectronic devices. Herein, a type-II InSe/PdSe2 vdWs heterostructure with strong interlayer transition for NIR photodetection is demonstrated. Strong interlayer transition between InSe and PdSe2 is predicted via density functional theory calculation and confirmed by photoluminance spectroscopy and Kelvin probe force microscopy. The heterostructure exhibits highly sensitive photodetection in NIR region up to 1650 nm. The photoresponsivity, detectivity, and external quantum efficiency at this wavelength respectively reaches up to 58.8 A W−1, 1 × 1010 Jones, and 4660%. The results suggest that the construction of vdWs heterostructure with strong interlayer transition is a promising strategy for infrared photodetection, and this work paves the way to developing high-performance optoelectronic devices based on 2D vdWs heterostructures.  相似文献   

6.
Due to its unique band structure and topological properties, the 2D topological semimetal exhibits potential applications in photoelectric detection, polarization sensitive imaging, and Schottky barrier diodes. However, its inherent large dark current hinders the further improvement of the performance of the semimetal-based photodetectors. In this study, a van der Waals (vdWs) field effect transistor (FET) composed of semimetal PdTe2 and transition metal dichalcogenides (TMDs) WSe2 is fabricated, which exhibits high sensitivity photoelectric detection performance in a wide band from visible light (405 nm) to mid-infrared (5 µm). The dark current and the noise level in the device are greatly suppressed by the effective control of the gate. Benefiting from the extremely low dark current (1.2 pA), the device achieves an optical on/off ratio up to 106, a high detectivity of 9.79 × 1013 Jones and a rapid response speed (219 and 45 µs). This research demonstrates the latent capacity of the 2D topological semimetal/TMDs vdWs FET for broadband, high-performance, and miniaturized photodetection.  相似文献   

7.
2D van der Waals heterojunctions (vdWhs) are a novel type of metamaterial that are flexible, adjustable, and easy to assemble. Using weak van der Waals forces (vdWfs), layered 2D materials can stack freely to form vdWhs with atomic level flat interfaces. By using different 2D materials and specific stacking methods, their unique properties can be organically combined, to exhibit more abundant optical properties. In fact, nanophotonic devices based on 2D vdWhs have developed rapidly and made significant progress. Therefore, the main progress of 2D vdWhs nanophotonic devices in recent years, including the preparation methods of 2D vdWhs and the performance improvements of various nanophotonic devices, is reviewed. Lastly, the prospects of 2D vdWhs nanophotonic devices are discussed.  相似文献   

8.
Organic–inorganic heterostructures are an emerging topic that is very interesting for optoelectronics. Here, non‐conventional p–n junctions are investigated using organic rubrene single crystal and 2D MoS2 as the p‐ and n‐type semiconducting materials, respectively. The current‐rectifying behavior is clearly observed in the junction device. The rectification ratio can be electrically tuned by the gate voltage due to the 2D nature of the heterostructure. The devices also show good photoresponse properties with a photoresponsivity of ≈500 mA W?1 and a fast response time. These findings suggest a new route to facilitate the design of nanoelectronic and optoelectronic devices based on layered inorganics and organics.  相似文献   

9.
Emergent properties of 2D materials attract considerable interest in condensed matter physics and materials science due to their distinguished features that are missing in their bulk counterparts. A mainstream in this research field is to broaden the scope of material to expand the horizons of the research area, while developing functional interfaces between different 2D materials is another indispensable research direction. Here, the emergence of electrical conduction at the interface between insulating 2D materials is demonstrated. A new class of van der Waals heterostructures consisting of two sets of insulating transition‐metal dichalcogenides, group‐VI WSe2 and group‐IV TMSe2 (TM = Zr, Hf), is developed via molecular‐beam epitaxy, and it is found that those heterostructures are highly conducting although all the constituent materials are highly insulating. The WSe2/ZrSe2 interface exhibits more conducting behavior than the WSe2/HfSe2 interface, which can be understood by considering the band alignments between constituent materials. Moreover, by increasing Se flux during heterostructure fabrication, the WSe2/ZrSe2 interface becomes more conducting, reaching nearly metallic behavior. Further improvement of the crystalline quality as well as exploring different material combinations are expected to lead to metallic conduction, providing a novel functionality emerging at van der Waals heterostructures.  相似文献   

10.
The recent realization of 2D magnetism in van der Waals (vdWs) magnets holds promise for future information technology. However, the vdWs semiconducting ferromagnets, which remain rare, are especially important in developing 2D magnetic devices with new functionalities due to the possibility of simultaneous control of the carrier charge and spin. Metal thiophosphate (MTP), a multifunctional vdWs material system that combines the sought‐after properties of complex oxides, is a promising vdWs magnet system. Here, single crystals of a novel vdWs ferromagnetic semiconductor MTP AgVP2Se6 with a room‐temperature resistivity of 1 Ω m are successfully synthesized. Due to the nature of vdWs bonding along the c‐axis, the magnetic properties of the few‐layer AgVP2Se6 with different thicknesses are characterized on the exfoliated samples. The AgVP2Se6 flakes exhibit significant thickness‐dependent magnetic properties, and a rectangular hysteresis loop with a large coercive field of 750 Oe at 2 K and an undiminished Curie temperature of 19 K are observed in the 6.7 nm AgVP2Se6 flake. The discovered vdWs ferromagnet AgVP2Se6 with semiconducting behavior will provide alternative platforms for exploring 2D magnetism and potential applications in spintronic devices.  相似文献   

11.
Van der Waals (vdWs) heterostructures enable bandgap engineering of different 2D materials to realize the interlayer transition via type-II band alignment leading to broaden spectrum that is beyond the cut-off wavelength of individual 2D materials. Interlayer transition has a significant effect on the optoelectronic performance of vdWs heterostructure devices, and strong interlayer transition in 2D vdWs heterojunction is always demandable for sufficient charge transfer and rapid speed response. Herein, a state-of-the-art review is presented on recent progress on interlayer transition in vdWs heterostructures for near-infrared (NIR) photodetectors. First, the general synthesis techniques for vdWs heterostructures, band alignments in the vdWs heterostructures are provided. Then, the mechanism of interlayer transition in vdWs heterostructure and recent progress on interlayer transition in vdWs heterostructures for NIR photodetectors are summarized. Afterward, some worthy applications of NIR photodetectors are reviewed in related areas of this topic. At the last, an outlook, challenges, and future research directions of vdWs heterostructures for photodetectors at broaden response spectrum are presented.  相似文献   

12.
Van der Waals heterostructures, composed of individual two-dimensional material have been developing extremely fast. Synthesis of van der Waals heterostructures without the constraint of lattice matching and processing compatibility provides an ideal platform for fundamental research and new device exploitation. We review the approach of synthesis of van der Waals heterostructures, discuss the property of heterostructures and thoroughly illustrate the functional van der Waals heterostructures used in novel electronic and photoelectronic device.  相似文献   

13.
Nonvolatile memories based on van der Waals heterostructures have been proved to be promising candidates for next‐generation data storage devices. However, little attention has been focused on the structure with separated floating and control gates (the floating gates and control gates distribute at the different side of the channels), which were recently predicted to be capable of further improving device performance. Here, nonvolatile multibit optoelectronic memories are demonstrated using MoS2, hexagonal boron nitride (h‐BN), and graphene in a top‐floating‐gated structure. With separated top graphene floating gate, the devices show a large memory window (≈95 V) via sweeping gate voltage from 80 to ?80 V, a high on/off ratio (≈106) with an ultralow dark current (≈10?14 A), as well as excellent retention characteristic (≈104 s) and cyclic endurance. In addition, these devices can also be erased by a laser illumination with broadband spectrum after being electrically programmed. For the multilevel storage property, 7/6 stages controlled by different electrical operations, and 13/6/3 stages by different laser pulse illuminations are gained. The obtained results show a promising performance for nonvolatile optoelectronic memory using a top‐floating‐gated structure.  相似文献   

14.
Moiré patterns are quasi‐periodic geometric patterns generated by the incommensurate stacking between two monolayers; they have rapidly attracted enormous attention due to their profound ability to modulate the electronic properties of 2D materials. For instance, the Bloch band of the Moiré superlattice, which is known as the Moiré band, can become flat at a specific series of discrete angles, and these flat bands are capable of exhibiting strong correlation behaviors such as the high‐temperature superconductivity reported recently. Moiré patterns can alter electronic properties, while surface reconstruction can modify Moiré patterns. In this review, the fundamental geometry is discussed and the basic electronic structure modification is summarized. Surface reconstruction is a method of tuning the electronic properties of a Moiré superlattice. Strong correlation phenomena, such as superconductivity, superfluidity, and magnetism induced by the flat bands, have been confirmed experimentally in recent years, which will be discussed in detail. Some possible application opportunities based on the fascinating characteristics of the Moiré pattern will also be presented. Because of the growing interest in Moiré patterns and related physical phenomena, it is anticipated that a deeper understanding of the fundamental physics of Moiré systems and further progress in the investigation of strong correlation phenomena are forthcoming.  相似文献   

15.
Ferroelectric memristors represent a promising new generation of devices that have a wide range of applications in memory, digital information processing, and neuromorphic computing. Recently, van der Waals ferroelectric In2Se3 with unique interlinked out-of-plane and in-plane polarizations has enabled multidirectional resistance switching, providing unprecedented flexibility in planar and vertical device integrations. However, the operating mechanisms of these devices have remained unclear. Here, through the demonstration of van der Waals In2Se3-based planar ferroelectric memristors with the device resistance continuously tunable over three orders of magnitude, and by correlating device resistance states, ferroelectric domain configurations, and surface electric potential, the studies reveal that the resistive switching is controlled by the multidomain formations and the associated energy barriers between domains, as opposed to the commonly assumed Schottky barrier modulations at the metal-ferroelectric interface. The findings reveal new device physics through elucidating the microscopic operating mechanisms of this new generation of devices, and provide a critical guide for future device development and integration efforts.  相似文献   

16.
Organic–inorganic or inorganic metal halide materials have emerged as a promising candidate for a resistive switching material owing to their ability to achieve low operating voltage, high on–off ratio, and multi-level switching. However, the high switching variation, limited endurance, and poor reproducibility of the device hinder practical use of the memristors. In this study, a universal approach to address the issues using a van der Waals metal contact (vdWC) is reported. By transferring the pre-deposited metal contact onto the active layers, an intact junction between the metal halide and contact layer is formed without unintended damage to the active layer caused by a conventional physical deposition process of the metal contacts. Compared with the thermally evaporated metal contact (EVC), the vdWC does not degrade the optoelectronic quality of the underlying layer to enable memristors with reduced switching variation, significantly enhanced endurance, and reproducibility relative to those based on the EVC. By adopting various metal halide active layers, versatile utility of the vdWC is demonstrated. Thus, this vdWC approach can be a useful platform technology for the development of high-performance and reliable memristors for future computing.  相似文献   

17.
Owing to the low-cost, dendrite-free formation, and high volumetric capacity, rechargeable Li+/Mg2+ hybrid-ion batteries (LMIBs) have attracted great attention and are regarded as promising energy storage devices. However, due to the strong Coulombic interaction of Mg2+ with host materials, the traditional “Daniell Type” LMIBs with only Li+ intercalation usually cannot ensure a satisfactory energy density. Herein, graphene monolayers are arranged intercalating into MoS2 interlamination to construct van der Waals heterostructures (MoS2/G VH). This operation transforms the construction of ion channels from pristine interlamination of two MoS2 monolayers to the interlamination of MoS2 monolayer with graphene monolayer, thereby greatly reducing ion diffusion energy barriers. Compared with pristine MoS2, the MoS2/G VH can obviously reduce the migration energy barriers of Li+ (from 0.67 to 0.09 eV) and Mg2+ (from 1.01 to 0.21 eV). Moreover, it is also demonstrated that MoS2/G VHs realize Li+/Mg2+ co-intercalation even at a rate current of 1000 mA g−1. As expected, the MoS2/G VH exhibits superior electrochemical performance with a reversible capacity of 145.8 mAh g−1 at 1000 mA g−1 after 2200 cycles, suggesting the feasibility of potential applications for high-performance energy storage devices.  相似文献   

18.
The recent discoveries of transition‐metal dichalcogenides (TMDs) as novel 2D electronic materials hold great promise to a rich variety of artificial van der Waals (vdWs) heterojunctions and superlattices. Moreover, most of the monolayer TMDs become intrinsically piezoelectric due to the lack of structural centrosymmetry, which offers them a new degree of freedom to interact with external mechanical stimuli. Here, fabrication of flexible vdWs p–n diode by vertically stacking monolayer n‐MoS2 and a few‐layer p‐WSe2 is achieved. Electrical measurement of the junction reveals excellent current rectification behavior with an ideality factor of 1.68 and photovoltaic response is realized. Performance modulation of the photodiode via piezo‐phototronic effect is also demonstrated. The optimized photoresponsivity increases by 86% when introducing a −0.62% compressive strain along MoS2 armchair direction, which originates from realigned energy‐band profile at MoS2/WSe2 interface under strain‐induced piezoelectric polarization charges. This new coupling mode among piezoelectricity, semiconducting, and optical properties in 2D materials provides a new route to strain‐tunable vdWs heterojunctions and may enable the development of novel ultrathin optoelectronics.  相似文献   

19.
Due to Fermi level pinning (FLP), metal-semiconductor contact interfaces result in a Schottky barrier height (SBH), which is usually difficult to tune. This makes it challenging to efficiently inject both electrons and holes using the same metal—an essential requirement for several applications, including light-emitting devices and complementary logic. Interestingly, modulating the SBH in the Schottky–Mott limit of de-pinned van der Waals (vdW) contacts becomes possible. However, accurate extraction of the SBH is essential to exploit such contacts to their full potential. In this study a simple technique is proposed to accurately estimate the SBH at the vdW contact interfaces by circumventing several ambiguities associated with SBH extraction. Using this technique on several vdW contacts, including metallic 2H-TaSe2, semi-metallic graphene, and degenerately doped semiconducting SnSe2, it is demonstrated that vdW contacts exhibit a universal de-pinned nature. Superior ambipolar carrier injection properties of vdW contacts are demonstrated (with Au contact as a reference) in two applications, namely, a) pulsed electroluminescence from monolayer WS2 using few-layer graphene (FLG) contact, and b) efficient carrier injection to WS2 and WSe2 channels in both n-type and p-type field effect transistor modes using 2H-TaSe2 contact.  相似文献   

20.
Two-dimensional transition metal carbides and nitrides (MXenes) show tremendous potential for optoelectronic devices due to their excellent electronic properties. Here, a high-performance ultraviolet photodetector based on TiO2 nanorod arrays/Ti3C2Tx MXene van der Waals (vdW) Schottky junction by all-solution process technique is reported. The Ti3C2Tx MXene modulated by the Au electrode increases its work function from 4.41 to 5.14 eV to form a hole transport layer. Complemented by the dangling bond-free surface of Ti3C2Tx, the Fermi-level pinning effect is suppressed and the electric-field strength of the Schottky junction is enhanced, which promotes charge separation and transport. After applying a bias of −1.5 V, the photovoltaic effect is favorably reinforced, while the hole-trapping mechanism (between TiO2 and oxygen) and reverse pyroelectric effect are largely eliminated. As a result, the responsivity and specific detectivity of the device with FTO/TiO2 nanorod arrays/Ti3C2Tx/Au structure reach 1.95 × 105 mA W−1 and 4.3 × 1013 cm Hz1/2 W−1 (370 nm, 65 mW cm−2), respectively. This work provides an effective approach to enhance the performance of photodetectors by forming the vdW Schottky junction and choosing metal electrodes to modulate MXene as a suitable charge transport layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号