首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

2.
The crystal structure of cobalt orthophosphate has been refined by full-matrix least-squares procedures using automatic diffractometer data to a residual R = 0.039 (Rw = 0.058). The space group is P2lc, with a = 5.063(1), b = 8.361(2), c = 8.788(2) Å, and β = 121.00(2)°. Co3(PO4)2 is isotypic with the previously reported γ-Zn3(PO4)2 and Mg3(PO4)2. Cobalt ions occupy two distinct coordination polyhedra, one five and one six-coordinated, in a ratio of two to one. The structure is described in detail.  相似文献   

3.
The crystal structure of Ca6Eu2Na2(PO4)6F2 has been determined by single crystal X-ray diffraction. The unit cell constants are a = 9.385(2), c = 6.893(3) A? and the space group is P63m. The structure was refined by normal full matrix least squares techniques. The final value of the refinement indicator is R = 0.065, based on 419 reflections.The structure of Ca6Eu2Na2(PO4)6F2 contains disordered cations in both the triangle and column positions. The occupation of the six triangle sites is 14Eu and 34Ca and of the four column sites 12Na, 410Ca, and 110Eu.  相似文献   

4.
Cu4(PO4)2O crystallizes in the space group P1 with a = 7.5393(8) Å, b = 8.1021(9) Å, c = 6.2764(8) Å, α = 113.65(1)°, β = 98.42(1)° and γ = 74.19(1)°. The structure was refined by full-matrix least-squares techniques using automatic diffractometer data to R = 0.046 (Rw = 0.056). Four unique copper atoms are in six, five-, and four-coordinated polyhedra which are linked together to form a three-dimensional network. The structure is best described in terms of a cubic close-packed array of oxygen atoms with one-tenth of the possible anion sites vacant.  相似文献   

5.
β-Ca3(PO4)2 crystallizes in the rhombohedral space group R3c with unit cell parameters a = 10.439(1), c = 37.375(6) Å (hexagonal setting) and cell contents of 21 [Ca3(PO4)2]. The structure was refined to Rw = 0.026, R = 0.030 using 1143 X-ray intensities collected from a single crystal by counter methods. Corrections were made for absorption, secondary extinction, and anomalous dispersion.The structure is related to that of Ba3(VO4)2, but has lower symmetry because of the widely different ionic sizes of Ca and Ba. Seven [Ca3(PO4)2] units occupy a volume corresponding to eight [Ba3(PO4)2] units. The requirement of the c glide in β-Ca3(PO4)2 has been shown in the least squares refinements to be attained by disorder of one cation over two sites. This disorder has a far-reaching effect on the structure.  相似文献   

6.
Single crystals of Ca3Cu3(PO4)4 synthesized hydrothermally at 420°C and 55 kpsi (3.8 kbar) were found to occur in the space group P21a (No. 14) with a = = 17.619(2), b = 4.8995(4), c = 8.917(1)Å, β = 124.08(1)°, and Z = 2. Full-matrix least-squares refinement of the structure using diffractometer data converged to a final anisotropic R = 0.037 (Rw = 0.046). The two calcium atoms are in six- and nine-coordination and the two copper-containing polyhedra (four- and five-coordinated) are similar to those previously found in Cu3(PO4)2.  相似文献   

7.
Cu4(PO4)2O is a new copper-rich phosphate. The preparation is described. The unit cell is triclinic, P1, with a = 7.528 Å, b = 8.090 Å, c = 6.272 Å; α = 113.68°, β = 81.56°, γ = 105.77°. The structure was solved from 1526 independent reflections using Patterson and Fourier syntheses. The final R value is 0.041 for the 1217 strongest reflections. Copper sites form a three-dimensional framework. The structure consists of homogeneous layers of copper and oxygen atoms parallel to the (012) plane. Phosphorus atoms are inserted between copper and oxygen layers.  相似文献   

8.
Thermal degradation of the cluster compound Os3(CO)8(PPh2H)(μ3-S)2 (I) at 125°C leads to decarbonylation and formation of the new ligand bridged hexanuclear cluster Os6(CO)14(μ-PPh2)23-S)34-S) (II) in 11% yield. Space Group: P1, No. 2, a 10.427(5), b 13.552(3), c 17.919(3) Å, α 84.87(2), β 75.41(3), γ 78.43(3)°, V 2399(2) Å3Z = 2, ?calc 2.82 g cm?3. The structure was solved by the heavy atom method and refined (3223 reflections) to the final residuals R = 0.042 and Rw = 0.036. The molecule consists of two sulfido bridged open triosmium clusters which are linked by a bridging sulfido ligand and a bridging diphenylphosphino ligand.  相似文献   

9.
The MIPO3Sm(PO3)3(MI = Li, Na, Ag) systems were studied. Differential thermal analysis and X-ray diffraction were used to investigate the liquidus and solidus relations. Three compounds LiSm(PO3)4, NaSm(PO3)4, and AgSm(PO3)4 were obtained which melt incongruently at 1248, 1143, and 1078 K, respectively. These compounds are isomorphous with their homologs LiLn(PO3)4, NaLn(PO3)4, AgLn(PO3)4 (Ln = Ce, La, Nd). They belong to the monoclinic system. The LiSm(PO3)4 unit cell parameters refined by least squares method are a = 16.43(3) Å, b = 7.16(1) Å, c = 9.65(3) Å, β = 125,9°(1), with the space group C2c and Z = 4. NaSm(PO3)4 and AgSm(PO3)4 are isotypic; they cristallize in the P21c space group, Z = 4; their unit cell parameters are, respectively, a = 12.18(1) Å, b = 13.05(1) Å, c = 7.25(5) Å, β = 126,53°(4), a = 12.25(1)A?, b = 13.06(1) Å, c = 7.201(9) Å, β = 126,57°(7). The ir spectra of the last two compounds indicate that these phosphates are chain phosphates.  相似文献   

10.
Ba2Ni3F10 is monoclinic (space group C2m), a = 18.542(7) Å, b = 5.958(2) Å, c = 7.821(3) Å, β = 111°92(10). Ba2Co3F10 and Ba2Zn3F10 are isostructural. The structure has been refined from 995 reflections by full-matrix least-squares refinement to a weighted R value of 0.048 (unweighted R, 0.047). The three-dimensional network can be described either by complex chains connected to each other by octahedra sharing corners or with an 18L dense-packing sequence. The basic unit (Ni3F10)4? is discussed and compared to the different unit existing in Cs4Mg3F10. Antiferromagnetic properties of Ba2Ni3F10 (TN = 50 K are described.  相似文献   

11.
Platy crystals from the products of a mixture 4 Bas : 2 Nb : 5 S reacted at 1000°C have cell constants a = 13.754(3) Å, c = 83.73(2) Å, R3m. The reciprocal lattice had a pronounced subcell with dimensions a = 6.877(1) Å, c = 41.84(1) Å, same space group. Three dimensional X-ray diffraction data were collected using monochromatized Mo radiation and of 5051 measured intensities 1892 were considered observed. From the set of observed intensities 611 reflections having all even indices were used to refine the crystal structure of the 42 × 7-Å subcell. The final R = 0.036 and ωR = 0.052 for the 611 observed amplitudes and R = 0.046, ωR = 0.052 for all 711 amplitudes of the subcell. The structure is based on the stacking of hexagonal BaS3 layers with the sequence DABABDBCBCDCACAD. The D layer denotes a disordered level and occurs at z = 0, 13 and 23. The different letters for the ordered layers are based on the Ba positions in that layer. The Nb ions occupy octahedral interstices and form a unit of three face sharing octahedra parallel to c. The column is terminated above and below by disordered levels. The NbNb distances are 3.22 Å, causing displacement of Nb from the centers of the two outside octahedra. One Ba is in the center of a triangular orthobicupola formed by 12 S atoms. The other Ba is in the center of a hexagon of 6 S with 3 additional S above this layer forming 12 of a cuboctahedron. The lower half consists of a disordered layer of atoms. The NbS distances are 2.279, 2.433, and 2.683 Å; BaS distances vary between 3.1 and 3.5 Å. The subcell content based on the ordered structure only is Ba12Nb9S36. The placement of disordered Ba and S at z = 0, 13, and 23 levels of the subcell leads to the unlikely composition Ba16.5Nb9S42. The ordered structure most likely has a composition Ba4Nb2S9, z = 36, so that the subcell composition should be Ba18Nb9S40.5. The completely ordered structure has not been solved.  相似文献   

12.
This compound is obtained in several ways, at 900°C, from the components of the FePO system when the oxygen pressure is made suitable, or from Fe3(PO4)2 + Fe + Fe2O3 in a sealed tube under vacuum. It crystallizes under these latter conditions with a trace of FeCl2. The cell is monoclinic; a = 6.564(1), b = 11.271(2), c = 9.383(2) Å, β = 103.95 (2)°, with Z = 4, group P21c. The structure is determined thanks to the use of a direct method and Fourier synthesis and is refined to R = 0.033. The PO4 tetrahedra are isolated; the iron fills four crystallographic sites: three are more or less distorted octahedra, the fourth is a trigonal bipyramid. The oxyphosphate character is ascertained by the presence of some oxygen atoms connected to iron only, with, moreover, a low site potential. This compound is paramagnetic above 90°K. Its Mössbauer spectrum exhibits four doublets in good agreement with the structure; in order to identify which one corresponds to the hexahedral site, the phase Fe3Zn(PO4)2O has been prepared, but its Mössbauer spectrum, in spite of the zinc affinity for the V coordination, shows that two sites are modified, which does not allow conclusions to be made.  相似文献   

13.
Black platy crystals from the product of a reaction mixture of 6BaS : 3Nb : 7S reacted at 1000°C were hexagonal with a = 6.909(4) Å, c = 49.25(2) Å, P63mmc, Z = 10. A pronounced subcell with a = 6.91Å, c = 5.5 Å indicated that this was a layer structure consisting of stacking of close-packed BaS3 layers. Three dimensional X-ray diffraction data were collected from a single crystal using monochromatized Mo radiation. From the 1535 measured reflections, 782 unique structure amplitudes were obtained of which 608 greater than 2σ(F) were used to solve the structure. The final R = 0.1065, ωR = 0.0793; for 91 reflections with l = 9n, R = 0.0397 and for the 517 reflections l ≠ 9n, R = 0.138. The structure is based on the stacking of close-packed BaS3 layers with the sequence CBDBABDBC BCDCACDCB, where D designates a disordered layer. The disordered layers contain two crystallographically independent Ba with partial site occupancies and disordered S2 and S ions. Nb occupy octahedral interstices and form two different arrangements; a unit consisting of 3 face-sharing octahedra and a unit of 2 face-sharing octahedra. These octahedral units are separated by the disordered layers. The NbNb distances in the chain of 3 are 3.29 Å and they are 3.57 Å in the double unit.  相似文献   

14.
The crystal structure of KxP4W14O50 (x = 1.4) has been solved by three-dimensional single crystal X-ray analysis. The refinement in the cell of symmetry A2m, with a = 6.660(2) Å, b = 5.3483(3) Å, c = 27.06(5) Å, and β = 97.20(2)°, Z = 1, has led to R = 0.036 and Rw = 0.039 for 2436 reflections with σ(I)I ≤ 0.333. This structure belongs to the structural family KxP4O8(WO3)2m, called monophosphate tungsten bronzes (MPTB), which is characterized by ReO3-type slabs of various widths connected through PO4 single tetrahedra. This bronze corresponds to the member m = 7 of the series and its framework is built up alternately of strands of three and four WO6 octahedra. The structural relationships with the P4O8(WO3)2m series, called M′PTB, are described and the possibility of intergrowth between these two structures is discussed.  相似文献   

15.
K3Sb3P2O14 crystallizes in the rhombohedral system, space group R3m with a = 7.147(1) Å, c = 30.936(6) Å, Z = 3. The structure was determined from 701 reflections collected on a Nonius CAD4 automatic diffractometer with MoKα radiation. The final R index and the weighted Rw index are 0.033 and 0.042, respectively. The structure is built up from layers of SbO6 octahedra and PO4 tetrahedra sharing corners. The potassium ions are situated between the (Sb3P2O14)3? covalent layers.  相似文献   

16.
Prismatic crystals of Pb6Li2Ca2(PO4)6 were obtained by solid-state reaction. They were characterized by IR spectroscopy and chemical analyses. The structure as determined by X-ray diffraction study on single crystal revealed that the compound is isostructural to the hexagonal phase Pb8Na2(PO4)6. Crystal data for Pb6Li2Ca2(PO4)6: space group P63/m (No. 176), a=b=9.6790(15) Å, c=7.1130(7), Z=1, R=0.039. In the compound, lithium was found to preferentially occupy the site (I) and the structure is stabilized by interactions between electron lone pairs of lead (II) ions. Electrical conductivity measured in a wide range of temperature is governed by a hopping mechanism of Li ions in tunnels.  相似文献   

17.
Ce6Mo10O39 crystallizes in the triclinic system with unit-cell dimensions (from single-crystal data) a = 10.148(5), Å, b = 18.764(6), Å, c = 9.566(5), Å, α = 103.12(7)°, β = 78.07(7)°, γ = 107.69(7)°, and space group P1, z = 2. The structure was solved using direct methods with 3113 countermeasured reflections (Mo radiation), and refined using Fourier and least-squares techniques to a conventional R of 0.039 (ωR = 0.047). Ce6Mo10O39 has a structure that consists of isolated MoO4 tetrahedra together with one corner-shared pair of tetrahedra, linked to irregular eight-coordinate Ce(III) polyhedra. The average MoO distance of 1.77 Å, and average CeO distance of 2.52 Å are in good agreement with previously reported values.  相似文献   

18.
NaBaCr2F9 and NaBaFe2F9 are monoclinic (SG P21n, No. 14). Lattice constants are found to be a = 7.318(2) Å, b = 17.311(4) Å, c = 5.398(1) Å, β = 91.14°(3) for chromium, and a = 7.363(2) Å, b = 17.527(4) Å, c = 5.484(1) Å, β = 91.50°(5) for iron. The structures were solved from 507 and 1113 X-ray reflections, respectively, for the Cr and Fe compounds; the corresponding Rw values are 0.025 and 0.037. The network is built from tilted double cis chains of octahedra (M2F9)3n?n [M = Cr, Fe], linked by Na+ and Ba2+ ions. The structures are compared to the previously described structures, particularly KPbCr2F9, whose symmetry and parameters are different. The difference is analyzed first in terms of tilted octahedra, but principally in terms of bond strengths and steric activity of the Pb2+ lone pair. A mechanism is proposed for the transformation between the structures of NaBaCr2F9 and KPbCr2F9.  相似文献   

19.
Use of Nd3+, Eu3+, and Gd3+ as local structural probes allows the determination of the rare earth positions in the NaxSr3?2xLnx(PO4)2 (Ln = La to Tb) and KCaLn(PO4)2 phases (Ln = rare earth). Moreover, a common feature of both series is a particularly high splitting of the excitation 6P72 and 6P52 levels of the Gd3+ ions.  相似文献   

20.
Ba2V2O7 is triclinic with a = 13.571(3), b = 7.320(2), c = 7.306(2) Å, α = 90.09(1), β = 99.48(1), β = 99.48(1), γ = 87.32(1)°, V = 7.15.1 Å3, Z = 4, and space group P1. The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares analysis to a Rw of 0.034 (R = 0.034) using 2484 reflections measured on a Syntex P1 automatic four-circle diffractometer. The structure has two unique divanadate groups that are repeated by the b and c lattice translations to form sheets of divanadate groups parallel to (100). These sheets are linked by four unique Ba atoms that lie between these sheets. Ba(1) and Ba(3) are coordinated by eight oxygens arranged in a distorted biaugmented triangular prism and a distorted cubic antiprism, respectively. Ba(2) is coordinated by 10 oxygens arranged in a distorted gyroelongated square dipyramid and Ba(4) is coordinated by nine oxygens arranged in a distorted triaugmented triangular prism. These coordination numbers are substantiated by a bond strength analysis of the structure, and the variation in 〈BaO〉 distances is compatible with the assigned cation and anion coordination numbers. Both divanadate groups are in the eclipsed configuraton with 〈VO(br)〉 bond lengths of 1.821(4) and 1.824(4) Å and VO(br)V angles of 125.6(3) and 123.7(3)°, respectively. Examination of the divanadate groups in a series of structures allows certain generalizations to be made. Longer 〈VO(br)〉 bond lengths are generally associated with smaller VO(br)V angles. When VO(br)V < 140°, the divanadate group is generally in an eclipsed configuration; when VO(br)V > 140°, the divanadate group is generally in a staggered configuration. Nontetrahedral cations with large coordination numbers require more oxygens with which to bond, and hence O(br) is more likely to be three coordinate, with the divanadate group in the eclipsed configuration. In the eclipsed configuration, decrease in VO(br)V promotes bonding between O(br) and nontetrahedral cations, and hence smaller nontetrahedral cations are generally associated with smaller VO(br)V angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号