首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a mass-spring system vibrates it does so with frequencies characteristic of the system. If the system as a whole now undergoes a rotational motion then these characteristic frequencies will change from their non-rotational values. It is the purpose of this paper to show how these changes may be calculated for a specified system and, in particular, to investigate the role in these changes of both the system and the rotational parameters. A system of N masses linked sequentially by springs in tension is allowed to vibrate about an equilibrium configuration both radially and transversely upon a smooth turntable. If the turntable is stationary then the radial and transverse vibrations are independent of each other, provided the amplitudes of vibration are sufficiently small. There are then N natural frequencies of vibration for each mode. However, when the turntable rotates then the Coriolis effects give rise to an interaction between the two modes of vibration, and there are now 2 N natural frequencies for the combined vibrations. If the rate of rotation is “small” then the two modes are almost separated and it is possible to discuss the “essentially radial” or “essentially transverse” mode of vibration each of which has N natural frequencies. It is these natural frequencies which are considered in this work, in particular their dependence upon the rotation rate and upon the tension in the springs (when in the static configuration). In a previous paper, it was shown that if only radial vibrations are allowed (by admitting say a guide rail) then all the natural frequencies decrease, with increasing rotation rate, from their static values. It is shown that the opposite is the case here in that the “essentially radial” natural frequencies increase with increasing rotation rate. This is due to the Coriolis interaction with the transverse vibrations. The “essentially transverse” frequencies are also found and the nature of their dependence discussed. Also included in the analysis is the effect on the frequencies of the (weak) coupling between the motion of the masses and the rotation of the turntable as a consequence of the conservation of angular momentum. In addition to treating N being finite the limiting case of an infinite number of masses is considered to determine the natural frequencies of vibration of a continuous stretched string undergoing rotation.  相似文献   

2.
This paper deals with the problem of robust reliable energy-to-peak controller design for seismic-excited buildings with actuator faults and parameter uncertainties. It is assumed that uncertainties mainly exist in damping and stiffness of the buildings because they are difficult to be measured precisely. The objective of designing controllers is to guarantee the asymptotic stability of closed-loop systems and attenuate disturbance from earthquake excitation. Energy-to-peak performance is believed to be of great significance when conditions and requirements of active building vibration control are carefully considered. Based on energy-to-peak control theory and linear matrix inequality techniques, a new approach for reliable building vibration control with satisfactory energy-to-peak performance is presented. An n-degree-of-freedom linear building structure under earthquake excitation is analyzed and simulations are employed to validate the effectiveness of the proposed approach in reducing seismic-excited building vibration. Some comparisons are also made between energy-to-peak control systems and H control systems to further prove the importance of the method raised in this paper.  相似文献   

3.
The possibility of preparing two-photon entangled states encoding three or more qubits in each photon leads to the following problem: If n quabits were distributed between two parties, which quantum pure states and qubit distributions would allow all-versus-nothing (or Greenberger-Horne-Zeilinger-like) proofs of Bell’s theorem using only single-qubit measurements? We show a necessary and sufficient condition for the existence of these proofs and provide all existing proofs up to n = 7 qubits. On the other hand, the possibility of preparing n-photon n-qubit graph states leads to the following problem: If n qubits were distributed between n parties, which would be the optimal Bell inequalities? We show all optimal n-party Bell inequalities for the perfect correlations of any graph state of n < 6 qubits. Optimal means that the ratio between the quantum violation and the bound for local hidden-variable theories is the maximum over all possible combinations of perfect correlations. This implies that the required detection efficiencies for loophole-free Bell tests are minimal.  相似文献   

4.
The free vibration analysis of cylindrical helical springs with noncircular cross-sections is carried out by means of an analytical study. In the governing equations of motion of a spring, all displacement functions and a generalized warping coordinate are defined at the centroidal principal axis. The effects of the rotational inertia, axial and shear deformations, including torsion-related warping deformations, are also considered in the formulations. Explicit analytical expressions that give the vibrating mode shapes are derived by rigorous application of the symbolic computing package MATHEMATICA, and the Muller root search method is used to determine the natural frequencies. Numerical examples are provided for springs with elliptic, rectangular and equilateral triangular cross-sections, and subjected to clamped-clamped and clamped-free boundary conditions. The natural frequencies are presented for a range of geometric parameters. In the case of elliptical wires, results are presented for the aspect ratio λ=a/b ranging from 3/5 to 5/3, the helix pitch angle from 5 to 12.5, the number of active turns n from 6 to 12, and the ratio of cylinder radius to minor axis R/2a ranging from 20/3 to 50/3. Validation of the proposed model has been achieved through comparison with a finite element model using three-dimensional solid elements and the results available in published literature, which in these cases indicates a good correlation.  相似文献   

5.
Negative stiffness is not allowed by thermodynamics and hence materials and systems whose global behaviour exhibits negative stiffness are unstable. However the stability is possible when these materials/systems are elements of a larger system sufficiently stiff to stabilise the negative stiffness elements. In order to investigate the effect of stabilisation we analyse oscillations in a chain of n linear oscillators (masses and springs connected in series) when some of the springs? stiffnesses can assume negative values. The ends of the chain are fixed. We formulated the necessary stability condition: only one spring in the chain can have negative stiffness. Furthermore, the value of negative stiffness cannot exceed a certain critical value that depends upon the (positive) stiffnesses of other springs. At the critical negative stiffness the system develops an eigenmode with vanishing frequency. In systems with viscous damping vanishing of an eigenfrequency does not yet lead to instability. Further increase in the value of negative stiffness leads to the appearance of aperiodic eigenmodes even with light damping. At the critical negative stiffness the low dissipative mode becomes non-dissipative, while for the high dissipative mode the damping coefficient becomes as twice as high as the damping coefficient of the system. A special element with controllable negative stiffness is suggested for designing hybrid materials whose stiffness and hence the dynamic behaviour is controlled by the magnitude of applied compressive force.  相似文献   

6.
This study considers the linear vibration characteristics of square [0n/90n]T laminates relative to their room-temperature static equilibrium configurations. A Rayleigh-Ritz approach combined with Hamilton's principle is used to provide approximate solutions to this vibration problem. The vibration mode shapes are assumed to have the same spatial dependence as used in past investigations to study the room-temperature configurations of these laminates, and are thus assumed to be perturbations on the static equilibrium configurations. Hamilton's principle then results in the so-called zero- and first-order equations. The zero-order equations lead to the classic static equilibrium results of past investigations, presented here in nondimensional form with analytical solutions at the bifurcation point. The first-order equations, combined with zero-order results, lead to the vibration characteristics for each zero-order static configuration. Interest centers on the lowest natural frequency and the associated mode shape for laminates clamped at their midpoints, with special attention as to how these vibration characteristics depend on the laminate side-length-to-thickness ratio. With an imaginary-valued frequency, the static saddle configuration for side-length-to-thickness ratios larger than the critical value is correctly assessed as unstable. A finite element model is also used to study the vibration characteristics and to compare with the findings for the developed analysis. The qualitative comparisons between the developed analysis and the finite element model are generally good, and the quantitative comparisons are also satisfactory.  相似文献   

7.
This paper presents a multiphase level set method of piecewise constants for shape and topology optimization of multi-material piezoelectric actuators with in-plane motion. First, an indicator function which takes level sets of piecewise constants is used to implicitly represent structural boundaries of the multiple phases in the design domain. Compared with standard level set methods using n scalar functions to represent 2n phases, each constant value in the present method denotes one material phase and 2n phases can be represented by 2n pre-defined constants. Thus, only one indicator function including different constant values is required to identify all structural boundaries between different material phases by making use of its discontinuities. In the context of designing smart actuators with in-plane motions, the optimization problem is defined mathematically as the minimization of a smooth energy functional under some specified constraints. Thus, the design optimization of the smart actuator is transferred into a numerical process by which the constant values of the indicator function are updated via a semi-implicit scheme with additive operator splitting (AOS) algorithm. In such a way, the different material phases are distributed simultaneously in the design domain until both the passive compliant host structure and embedded piezoelectric actuators are optimized. The compliant structure serves as a mechanical amplifier to enlarge the small strain stroke generated by piezoelectric actuators. The major advantage of the present method is to remove numerical difficulties associated with the solution of the Hamilton–Jacobi equations in most conventional level set methods, such as the CFL condition, the regularization procedure to retain a signed distance level set function and the non-differentiability related to the Heaviside and the Delta functions. Two widely studied examples are chosen to demonstrate the effectiveness of the present method.  相似文献   

8.
More and more attentions are attracted to the analysis and design of nonlinear vibration control/isolation systems for better isolation performance. In this study, an isolation platform with n-layer scissor-like truss structure is investigated to explore novel design of passive/semi-active/active vibration control/isolation systems and to exploit potential nonlinear benefits in vibration suppression. Due to the special scissor-like structure, the dynamic response of the platform has inherent nonlinearities both in equivalent damping and stiffness characteristics (although only linear components are applied), and demonstrates good loading capacity and excellent equilibrium stability. With the mathematical modeling and analysis of the equivalent stiffness and damping of the system, it is shown that: (a) the structural nonlinearity in the system is very helpful in vibration isolation, (b) both equivalent stiffness and damping characteristics are nonlinear and could be designed/adjusted to a desired nonlinearity by tuning structural parameters, and (c) superior vibration isolation performances (e.g., quasi-zero stiffness characteristics etc.) can be achieved with different structural parameters. This scissor-like truss structure can potentially be employed in different engineering practices for much better vibration isolation or control.  相似文献   

9.
The natural frequencies and modes of transverse vibration of circular plates containing small imperfections are determined through a perturbation method. Incision of equally spaced, equal-size radial slots at the rim of the plate creates asymmetry in some, but not all, of the vibration modes, and it causes the repeated natural frequencies of these modes in the symmetric plate to split into two distinct values. These vibration modes are called the split modes, and those associated with the repeated natural frequencies are called the repeated modes. A relationship identifying the split and repeated modes for any configuration of slots is presented. The vibration of a plate containing any number of thin slots cut into it at the rim and with any number of rotating linear springs is analyzed. Parametric instability can be excited in the split modes of the plate by the springs rotating below critical speed, but it cannot be excited in the repeated modes. The response of the plate in forms such as traveling or standing waves at parametric resonance is discussed. The theoretical predictions of split and repeated vibration modes and of the excitation of parametric instability are confirmed by experiments.  相似文献   

10.
11.
Non-linear dynamic problems governed by ordinary (ODE) or partial differential equations (PDE) are herein approached by means of an alternative methodology. A generalized solution named WEM by the authors and previously developed for boundary value problems, is applied to linear and non-linear equations. A simple transformation after selecting an arbitrary interval of interest T allows using WEM in initial conditions problems and others with both initial and boundary conditions. When dealing with the time variable, the methodology may be seen as a time integration scheme. The application of WEM leads to arbitrary precision results. It is shown that it lacks neither numerical damping nor chaos which were found to be present with the application of some of the time integration schemes most commonly used in standard finite element codes (e.g., methods of central difference, Newmark, Wilson-θ, and so on). Illustrations include the solution of two non-linear ODEs which govern the dynamics of a single-degree-of-freedom (s.d.o.f.) system of a mass and a spring with two different non-linear laws (cubic and hyperbolic tangent respectively). The third example is the application of WEM to the dynamic problem of a beam with non-linear springs at its ends and subjected to a dynamic load varying both in space and time, even with discontinuities, governed by a PDE. To handle systems of non-linear equations iterative algorithms are employed. The convergence of the iteration is achieved by takingn partitions of T. However, the values of T/n are, in general, several times larger than the usual Δt in other time integration techniques. The maximum error (measured as a percentage of the energy) is calculated for the first example and it is shown that WEM yields an acceptable level of errors even when rather large time steps are used.  相似文献   

12.
The peculiarities of broadening of spectral lines of symmetric top molecules that are related to the double degeneracy of JK levels at K ≠ 0 are considered. It is shown that, irrespective of the potential barrier height for the inversion vibration, transitions between such levels should be considered as doublets whose components are coupled with each other by the collision-induced spectral exchange. The shape of the doublet is described by the well-known Ben-Reuven formula, and, in this case of molecules with a high potential barrier for the inversion vibration, is a dispersion contour with a half-width equal to the difference between the halfwidth of the component of the doublet and the cross-relaxation parameter.  相似文献   

13.
Systems that are operated near their resonance frequencies experience vibrations that can lead to impaired performance, overstressing, fatigue fracture and adverse human reactions. Frequency response (FR) analysis can be invoked to mitigate the effects. When components of a system are described by random variables, modal frequencies and modal shapes, or, amplitudes and phases, are also random variables and the frequency response (FR) design of the system becomes more complex since it requires the solution of a frequency-variant probability problem. This paper presents a methodology to provide the frequency response design of uncertain systems using a transfer function approach. The methodology is found to be robust, expandable and flexible and can be applied to multi-disciplinary systems with n-dof and multiple design constraints. The novelty of the approach is the creation of a frequency-invariant probability problem through: (a) the discretization of the frequency band of interest into multiple contiguous point frequencies, (b) the introduction of new performance indices that measure the probability of success over the entire frequency band, and (c) the introduction of explicit meta-models to provide sufficiently fast probability evaluations through Monte Carlo simulation. The key to the performance indices are limit-state functions formed at all discrete, contiguous, frequencies. Each limit-state function establishes a conformance region in terms of the random design variables. The probabilities of the conformance regions are correctly combined to provide a single series-system index to be maximized by adjusting distribution parameters. The simple explicit meta-model is based on Kriging and performance measures at arbitrary design sets are efficiently calculated. Error analysis suggests ways to predict and control the errors with regards to meta-model fitting and probability calculations and so the method appears sufficiently accurate for engineering applications. The proposed methodology has applications in numerous areas such as electrical filters and structural mechanics – all with n-dof and multiple responses. The Performance indices can be evaluated at any frequency over any number of frequency ranges. A case study of a vibration absorber mechanism shows how the new methodology provides an improved and timely design with controllable accuracy when compared with previous proposals that employed modal frequencies.  相似文献   

14.
Linear thermal buckling and free vibration analysis are presented for functionally graded cylindrical shells with clamped-clamped boundary condition based on temperature-dependent material properties. The material properties of functionally graded materials (FGM) shell are assumed to vary smoothly and continuously across the thickness. With high-temperature specified on the inner surface of the FGM shell and outer surface at ambient temperature, 1D heat conduction equation along the thickness of the shell is applied to determine the temperature distribution; thereby, the material properties based on temperature distribution are made available for thermal buckling and free vibration analysis. First-order shear deformation theory along with Fourier series expansion of the displacement variables in the circumferential direction are used to model the FGM shell. Numerical studies involved the understanding of the influence of the power-law index, r/h and l/r ratios on the critical buckling temperature. Free vibration studies of FGM shells under elevated temperature show that the fall in natural frequency is very drastic for the mode corresponding to the lowest natural frequency when compared to the lowest buckling temperature mode.  相似文献   

15.
In this paper we calculate the charge distribution n(Q) for a structurally disordered system of identical atoms. The atoms have non-zero charges associated to them only because the spatial configuration around each atom is different. The systems considered are those for which an atomic basis set is adequate and an iterative tight binding scheme, where the matrix elements depend on the atomic charges, is used. We study the effect of including explicitly the electrostatic interaction among the charges associated to the atoms in the calculation of n(Q). We propose that the atomic positions of a totally random configuration be modified by amounts proportional to the electrostatic forces on the atoms. We call this a relaxation effect. We find that the new atomic configurations give a narrower n(Q) although they have practically the same energy and radial distribution function as the original configuration.  相似文献   

16.
The spectra of the optical constants n(v) and κ(v) of a strongly absorbing object, graphite, having a high concentration and mobility of free carriers, are calculated by the methods of classical dispersion analysis. The problem of detection and identification of vibrational states of the substance against an intense nonselective absorption is considered. The calculated spectra of the optical constants of graphite are compared with the analogous data obtained from the spectrum of attenuated total internal reflection in the range of the vibrational E 1u mode of a quasi-single crystal of graphite, the Raman spectrum of the sample, and the background spectrum of graphite structures.  相似文献   

17.
The application of mechanical springs connected in parallel and/or in series with active springs can produce dynamical systems characterised by infinite or zero value stiffness. This mathematical model is extended to more general cases by examining the dynamic modulus associated with damping, stiffness and mass effects. This produces a theoretical basis on which to design an isolation system with infinite or zero dynamic modulus, such that stiffness and damping may have infinite or zero values. Several theoretical designs using a mixture of passive and active systems connected in parallel and/or in series are proposed to overcome limitations of feedback gain experienced in practice to achieve an infinite or zero dynamic modulus. It is shown that such systems can be developed to reduce the weight supported by active actuators as demonstrated, for example, by examining suspension systems of very low natural frequency or with a very large supporting stiffness or with a viscous damper or a self-excited vibration oscillator. A more general system is created by combining these individual systems allowing adjustment of the supporting stiffness and damping using both displacement and velocity feedback controls. Frequency response curves show the effects of active feedback control on the dynamical behaviour of these systems. The theoretical design strategies presented can be applied to design feasible hybrid vibration control systems displaying increased control performance.  相似文献   

18.
Zhenying Wen  Bambi Hu 《Physica A》2011,390(4):595-601
In this paper, we investigate in detail the interactions of solitary waves in lattice systems with interaction potential V(q)=qn/n, where n is 4,6,8…, through their all possible collision types, and establish a quantitative connection between the scattering property of solitary waves and the chaotic dynamics of the systems. Kink and antikink are excited in such lattice systems and the variation of their scattering effect with n is concerned. After a kink-antikink collision, the dominant interaction in the systems, if n is small, is that solitary waves pass through each other and the scattering effect increases with n; if n is large, solitary waves reflect back sometimes due to the influence of phase and this leads to a decrease of the scattering effect with n. The largest Lyapunov exponents of systems at fixed energy density first increase and then decrease with n, which is consistent with a variation of the scattering effect. The application of the special scattering behaviors between kink and antikink in information propagation is also discussed.  相似文献   

19.
Vibration isolators have been extensively used to reduce the vibration and noise transmitted between the components of mechanical systems. Although some previous studies on vibration isolation considered the inertia of isolators, they only examined its effects on the vibration of single degree-of-freedom (d.o.f.) systems. These studies did not emphasize the importance of the isolators’ inertia, especially from the perspective of noise reduction. This paper shows that the internal dynamics of the isolator, which are also known as internal resonances (IRs) or wave effects, can significantly affect the isolator performance at high frequencies. To study the IR problem, a model of a primary mass connected to a flexible foundation through three isolators is used. In this model, the isolator is represented as a one-dimensional continuous rod that accounts for its internal dynamics. The primary mass is modelled as a rigid body with three d.o.f.'s. The effects of the IRs on the force transmissibility and the radiated sound power from the foundation are examined. It is shown that the IRs significantly increase the force transmissibility and the noise radiation level at some frequencies. These effects cannot be predicted using a traditional model that neglects the inertia of the isolator. The influence of the foundation flexibility on the IRs is also investigated. It is shown that the foundation flexibility greatly affects the noise radiation level but it affects only slightly the force transmissibility, especially at high frequencies where the IRs occur.  相似文献   

20.
A major limitation of the Rayleigh-Ritz method for determining the natural frequencies of a system is the need to choose admissible functions that do not violate the geometric constraints of that system (Courant 1943 Bulletin of the American Mathematical Society49, 1-23). Several researchers have attempted to overcome this problem by asymptotically modelling the rigid constraints with artificial (imaginary) restraints of very large stiffness (Courant 1943Bulletin of the American Mathematical Society49 , 1-23; Warburton and Edney 1984 Journal of Sound and Vibration95, 537-552; Gorman 1989 Journal of Applied Mechanics56, 893-899; Kim et al. 1990 Journal of Sound and Vibration143, 379-394; Yuan and Dickinson 1992 Journal of Sound and Vibration153, 203-216; Yuan and Dickinson 1992 Journal of Sound and Vibration159, 39-55; Cheng and Nicolas 1992 Journal of Sound and Vibration155, 231-247; Yuan and Dickinson 1994Computers and Structures53 , 327-334; Lee and Ng 1994 Applied Acoustics42, 151-163; Amabili and Garziera 1999 Journal of Sound and Vibration224, 519-539; Amabili and Garziera 2000 Journal of Fluids and Structures14, 669-690). While the numerical results thus obtained for the systems considered in the literature were in close agreement with exact values for the natural frequencies corresponding to the first few modes, sample calculations show that the error introduced by the asymptotic modelling increases with mode number and therefore to obtain accurate results for higher modes the magnitude of stiffness should also be increased. In any event, the error due to the asymptotic modelling would remain uncertain, except when the correct frequency values are known. However, the use of artificial restraints with negative stiffness, a new concept which was introduced in a recent publication (Ilanko and Dickinson 1999 Journal of Sound and Vibration219, 370-378) paves the way for estimating the error due to asymptotic modelling. This is possible since in this work, the Rayleigh-Ritz frequencies of the constrained system were found to be bracketed by the frequencies of the asymptotic models with positive and negative restraints. However, the use of artificial restraints with negative stiffness has raised some important questions: would a system with a large negative restraint become unstable, and if so what is the guarantee that the frequencies of the asymptotic model would converge to that of the constrained system? This paper is the result of the author's attempt to answer these questions and gives a proof of existence of natural frequencies for systems with artificial restraints (springs) having positive or negative stiffness coefficients, and their convergence towards constrained systems. Based on Rayleigh's theorem of separation, it has been shown that a vibratory system obtained by the addition of h restraints to an n -degree-of-freedom (d.o.f.) system, where h<n, will have at least (n÷h) natural frequencies and modes and that as the magnitude of the stiffness of the added restraints becomes very large, these (n÷h) natural frequencies will converge to the (n÷h) natural frequencies of a constrained system in which the displacements restrained by the springs are effectively constrained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号