首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
When a free jet (or open jet) is used as a wind tunnel to simulate the effects of flight on model noise sources, it is necessary to calibrate out the effects of the free jet shear layer on the transmitted sound, since the shear layer is absent in the real flight case. In this paper, a theoretical calibration procedure for this purpose is first summarized; following this, the results of an experimental program, designed to test the validity of the various components of the calibration procedure, are described. The experiments are conducted by using a point sound source located at various axial positions within the free jet potential core. By using broadband excitation and cross-correlation methods, the angle changes associated with ray paths across the shear layer are first established. Measurements are then made simultaneously inside and outside the free jet along the proper ray paths to determine the amplitude changes across the shear layer. It is shown that both the angle and amplitude changes can be predicted accurately by theory. It is also found that internal reflection at the shear layer is significant only for large ray angles in the forward quadrant where total internal reflection occurs. Finally, the effects of sound absorption and scattering by the shear layer turbulence are also examined experimentally.  相似文献   

3.
As a result of flight noise measurements made at various locations in the cabin of the standard lined/no interior Westwind model 1124 business executive jet, it was possible to develop an empirical method for predicting the overall sound pressure level (OASPL) at any required location in the cabin. The cabin overall sound level in decibels (linear) may be found from nomographs related to aircraft altitude, mach number or velocity. The noise spectrum at any location may be found from a reference spectrum shape corrected for local parameters. The accuracy of the prediction method, verified by additional tests, was found to be ± 1 dB.  相似文献   

4.
The noise of a single-stream circular jet and that of a coaxial jet with coplanar nozzles of 2·5 area ratio have been measured under simulated flight conditions in the RAE 24 ft wind-tunnel. The majority of tests were conducted with the single-stream jet and primary section of the coaxial jet at a nominal temperature of 880 K. The data have been used to quantify the effect of jet temperature and were combined with measurements from an earlier test series to establish a prediction method for the effect of flight on the noise of single-stream subsonic jets. This method is based on jet noise theory modified by experimentally derived constants. For coaxial jets it is concluded that the noise reductions, which are independent of the secondary stream velocity, are predicted to an acceptable degree by the method suggested for unheated single-stream jets. The prediction methods are suitable for both OASPL's and spectra.  相似文献   

5.
This paper examines the effect of flight on the sound radiated by a high frequency source embedded in a constant area jet pipe in the presence of flow. Ray acoustics theory and classical results for sound transmission at an interface of relative motion are used. The diffraction of sound at the nozzle lips, the inhomogeneity and irregularity of the interface and the possibility of instability waves being triggered by the incident sound are neglected. Some of the waves characterized by wave-fronts pointing upstream are shown to be convected downstream by the flow and to illuminate the forward arc after refraction at the jet interface. The amount of energy emitted by the source, which is trapped inside the flow, depends only on internal jet pipe conditions. However, the portion of the forward arc which is illuminated by this energy, is a function of flight speed. The radiation into the ambient atmosphere at rest of a basically omnidirectional source peaks at the edge of the downstream zone of silence and falls off rapidly when the observation angle is increased. The flight to static comparison reveals an interesting forward arc amplification due to flight but this occurs in a range of angles where the radiation is basically rather feeble.  相似文献   

6.
Formulas are derived for the high frequency sound emission from moving point multipole sources embedded in an arbitrary uni-directional transversely sheared mean flow. The results are used to study the sound generated by non-axisymmetric turbulent jets. The effect of the asymmetry in both the mean flow and the source distribution is accounted for by a “circumferential directivity factor”, which is easily calculated from the solution of a second order ordinary differential equation in the general case and from an explicit formula when the mean flow is symmetric but the source location is not. This factor is used to assess the potential of employing asymmetric velocity profiles that redirect the sound upward to reduce the noise radiation below the flight path of a jet aircraft.  相似文献   

7.
It has been found experimentally that broad band jet noise can be amplified by a pure tone excitation as much as 6 to 7 dB. The jet noise amplification effect takes place at sound pressure levels which are present in real aircraft engines. The experimental investigation was restricted to a cold jet at high subsonic Mach numbers excited by a plane sound wave coming from inside the nozzle. Based on a simplified mathematical model an attenuator has been constructed which is able to reduce the jet noise amplification significantly.  相似文献   

8.
The characteristics of the sound field of shock-containing under-expanded jet flows are studied by measuring the noise from a convergent nozzle operated over an extensive envelope of supercritical jet operating conditions. The measurements were conducted in an anechoic facility. They are complementary to the turbulent mixing noise experiments (described in Part I) for subsonic and fully-expanded (shock-free) supersonic jets. The overall results from shock-containing jets are compared directly with the corresponding results from shock-free jets, and the effects of nozzle pressure ratio and jet exhaust temperature on broadband shock-associated noise are assessed independently. For a supersonic jet, the regimes of jet operating conditions, observer angles, and frequencies over which the sound field is dominated by shock-associated noise are identified. Finally, the spectral results are compared in a preliminary manner with the spectra predicted by an existing theoretical model, and good agreement is obtained in most cases.  相似文献   

9.
In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model for sound transmission into a thin cylindrical shell is used to study sound transmission under “flight conditions”: i.e., under conditions of external air flow past a pressurized cylinder at flight altitude. Numerical results for different incidence angles are presented for a typical narrow-bodied jet in cruising flight at 10 660 m (35 000 ft) with interior pressure at 2440 m (8000 ft). A comparison is made between no-flow sound transmission at standard conditions on the ground to sound transmission under flight conditions. It is shown that at M = 0, the cylinder transmission loss has dips at fR (cylinder ring frequency) and fc (critical frequency for a flat panel of same material and thickness as shell). Below fR cylinder resonances affect TL. Between fR and fc, cylinder TL follows a masslaw behavior. Flow provides a modest increase in TL in the mass-law region, and strongly interacts with the cylinder resonances below fR. For normally-incident waves, TL is unaffected by flow.  相似文献   

10.
11.
田静 《声学学报》2015,40(2):129-133
微穿孔板吸声体是马大猷教授提出的一项特殊的设计技术,自上世纪80年代以来被广泛地应用在音质处理和噪声控制中。微穿孔板吸声体是一种无纤维的宽带吸声材料,它不仅能够应用在传统的建筑声学和噪声控制等领域中,更有意义的是它适用于高温、高速气流、高洁净、需要透明采光等一些极端条件下。当微穿孔板后面有一定的空腔时,它可以在低频的几个频程内具有很高的吸声系数。在喷注噪声控制理论方面,马教授根据小孔喷注噪声与其压力和直径的关系,根据人的听觉生理和心理特性,提出了在气流或者蒸汽出口的颈部处设计合适的小孔结构,可以大大减少气流噪声对人的干扰作用可听声频段内的声辐射,降噪量一般来说可以达到20~60 dBA的降噪量。这就是小孔喷注理论。本文回顾了马大猷教授在他学术生涯第二个春天里结出的这两颗硕果——微穿孔板和小孔喷注,关于微穿孔板在声场和声源噪声控制中的声学特性理论,主要回顾和讨论了微穿孔板结构的研究进展及其在噪声控制中的实际应用,以及小孔喷注噪声的主要能量转移到超声波频段内的物理概念,这一概念对现代喷注噪声控制的发展依然具有重要意义。   相似文献   

12.
In order to analyze the effect of the background flow on the sound prediction of fine-scale turbulence noise, the sound spectra from static and flow environments are compared. It turns out that, the two methods can obtain similar predictions not only at 90 deg to the jet axis but also at mid- and high frequencies in other directions. The discrepancies of predictions from the two environments show that the effect of the jet flow on the sound propagation is related to low frequencies in the downstream and upstream directions. It is noted that there is an obvious advantage of computational efficiency for calculating in static environment, compared with that in flow environment. A good agreement is also observed to some extent between the predictions in static environment and measurements of subsonic to supersonic. It is believed that the predictions in static environment could be an effective method to study the propagation of the sound in jet flow and to predict the fine scale turbulence noise accurately in a way as well.  相似文献   

13.
This is a study of the effect of initial condition on sound generated by vortex pairing in a low Mach number, cold air jet (0·15 ⩽ M ⩽ 0·35). Data has been taken, both flow velocity fields and sound pressure far fields, in a quality anechoic facility, with careful documentation of the effect of initial condition on the sound field of jets of two different geometries (i.e., circular and elliptic). Explanations are presented for most of the observed effects by applying Möhring's theory of vortex sound to vortex filament models of coherent structures in the jets. The explanations also draw upon experience with coherent structure dynamics. The sound source of interest here is that associated with the pairing of shear layer vortices. The evolution of these vortices is greatly affected by the initial condition as is their resultant sound field. The elliptic jets with laminar boundary layers show azimuthal directivity, namely, sound pressure levels in the minor axis plane were greater than in the major axis plane. This difference decreases as the nozzle boundary layer undergoes natural transition with increasing jet speed. When the nozzle boundary layer is tripped, making it fully turbulent and removing the shear layer mode of pairing, the elliptic jet sound fields become nearly axisymmetric. What appears to be the most acoustically active phase of vortex pairing has been modeled, and the resulting sound field calculated for the circular jet. Supporting evidence is found in the experimental data for the validity of this model. The model explains the connection between the initial condition and the far field sound of jets. Interestingly, a general result of Möhring's theory is that motions of vortex rings (of any arbitrary shape) can produce only axisymmetric sound fields if the rings remain in a plane. This implies that the observed asymmetric directivity of the laminar elliptic jet sound field must be due to non-planar ring motions of the vortical structures. The primary contribution of this paper is to examine quantitatively the role of vortex pairing in the production of jet noise; the results are used to reemphasize that “pairing noise” cannot be dominant in most practical jet sound fields, contrary to claims by other researchers.  相似文献   

14.
Noise and flow field measurements are reported for an inverted profile coannular jet (where the annular jet speed exceeds the center jet speed) under simulated flight conditions. The annular and center jets were cold and both were operated subsonically. Forward flight was simulated by placing the coannular jet inside a larger open jet. Acoustic measurements show the effects of inverted profile shape and simulated flight on far field directivity, total radiated power, and spectral content. Measurements of total acoustic power demonstrate that the acoustic efficiency of inverted profile jets is about 3 dB less than the efficiency of “top hat” profile jets, and that the noise decreases as the seventh power of the relative jet velocity in the limit of small flight velocity, Uf. Flow measurements demonstrate that the jet spreading parameter λ = (Uj ? Uf)/(Uj + Uf) scales the thickness of the outer shear layer and the passage frequencies of the large turbulence scales. Comparisons between the turbulence time scales and the noise spectra suggest that coherent noise sources may become more important in forward flight.  相似文献   

15.
A prototype of the Aérotrain has been modified by SNECMA and Société Bertin to investigate flight effects on jet noise and jet suppressor performance. To this end, special attention was given to the reduction of parasitic noise from the vehicle and internal noise from the GE-J85 turbojet engine which powers the Aérotrain. The vehicle, its performance, the operational techniques, the measurement and analysis procedures used are fully described, together with the results of the calibration tests of this unique and very flexible facility which presents many advantages compared to aircraft in flight. Typical results, consistent with the trends shown by clean aircraft noise data, are presented.  相似文献   

16.
New scaling laws are presented for hot turbulent jet mixing noise outside the cone of silence. These account for mean flow field effects on sound radiation via an analytical high frequency approximate solution to Lilley's equation. Numerical calculations for sound radiation from sources in a cylindrical shear flow are used to test the validity of the approximation. The proposed scaling laws yield an excellent collapse of jet noise measurements over a wide range of conditions. The resulting information has been incorporated into a jet mixing noise prediction scheme which, with appropriate modifications to the analytical high frequency approximation, can be applied both inside and outside the cone of silence. The prediction scheme for angles inside the cone of silence will be described in a subsequent paper.  相似文献   

17.
Spectral information on the sound radiated from turbulent shock-free jets is now available over a wide range of Strouhal numbers, for jet densities ranging from 0·3 to 2 times the ambient density and jet velocities ranging from 0·3 to 2 times the ambient sound speed. In order to account for some of the trends observed, a jet noise model is developed which takes account of acoustic-mean flow interaction. The model is based on a shear flow analogy, for which the governing equation is Lilley's equation, and numerical solutions are obtained for sources representative of turbulent mixing noise. Analytic solutions developed for low- and high-frequency excitation show good agreement with the numerical results. Finally, the model predictions are compared with measurements on hot and isothermal jets.  相似文献   

18.
We study experimentally how plasma actuators operating on the basis of surface barrier high-frequency discharge affect jet noise characteristics. The results of investigations of air jets (100?C200 m/s) have demonstrated that the studied plasma actuators have control authority over the noise characteristics of these jets. An actuator??s effect on the jet in the applied configuration is related to acoustic discharge excitation and to a large extent is similar to the well-known Vlasov-Ginevsky effect. It has been shown that jet excitation in the case of St ?? 0.5 using the barrier-discharge plasma actuator leads to broadband amplification of jet sound radiation. The jet excitation in the case of St > 2 leads to broadband noise reduction if the action is sufficiently intensive.  相似文献   

19.
本文以某型客机为研究对象,从飞行试验数据分析和声学建模两方面研究机体表面声压分布及其对舱内壁板近场辐射声压的影响。首先根据试飞数据分析了机体表面声压分布,然后利用统计能量法建立飞机客舱中后段的声学模型,以试飞数据作为声源输入,研究机体表面声压分布对客舱内部壁板附近声压分布的影响,并在此基础上提出优化设计方案,通过模型验证优化方案的有效性。试飞数据表明:机体表面声压在后应急门前方、靠近地板处最大;巡航速度升高,声压级较大区域的面积随之增加;巡航高度和发动机N1N2频率变化对机体表面声压级分布无明显影响。仿真数据表明:仅蒙皮结构无法有效降低客舱噪声;对声学降噪包进行优化能增加壁板隔声量,降低舱内声压。  相似文献   

20.
An optimization model of flight paths is designed for minimizing aircraft noise at reception points around airports. It is stated as a nonconvex and nonlinear control problem governed by ordinary differential equations using a jet noise model. The vertical plan and the space cases have been solved using two approaches, one direct and one indirect. The objective was initially to apply these two methods, then to carry out comparisons, and finally to retain the method which would be applied for the general case including engine and airframe sources. Results showed that the direct method is adapted for solving the problem and can be implemented with moderate computing times. It is sufficient to analyze the constrained flight path optimization of commercial aircraft reducing noise levels. The three-segment approach procedure has been obtained as an optimized flight path which can substantially reduce noise levels. This modified approach procedure has been examined and could benefit both airlines and communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号