首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first comprehensive study of shallow shell vibrations subjected to as many as 21 possible boundary conditions is presented. Thin shallow shell theory is used. Relatively accurate results for natural frequencies of doubly-curved shallow shells have been obtained. These can be used for benchmarking by researchers as well as reference data for practicing engineers. The Ritz method is used to solve for natural vibrations of these shells with arbitrary boundary conditions. Natural frequencies are presented for various shell curvatures including spherical, cylindrical and hyperbolic paraboloidal shells.  相似文献   

2.
Free vibration analysis of truncated conical shells with general elastic boundary conditions is presented in this paper. An accurate modified Fourier series solution is developed, in which, regardless of the boundary conditions, each displacement of the conical shell is invariantly expressed as a new form of improved series expansions composed of a standard Fourier series and closed-form auxiliary functions introduced to ensure and accelerate the convergence of the series expansion. All the expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh–Ritz method. By using the present method, conical shells with arbitrary boundary conditions including all classical and elastic end restraints can be solved in a unified form. The accuracy and convergence of the current approach are validated by numerical examples and comparison with FEM results and those from the literature, and excellent accuracy is demonstrated. Comprehensive studies on the effects of elastic restraint parameters, semi-vertex angle and the ratio of length to radius are also reported. Some new results are presented for cases with elastic boundary restraints which may serve as benchmark solution for future researches.  相似文献   

3.
The boundary conditions for the gravitational and electromagnetic fields on charged shells are formulated. The shells are characterized in geometrical terms and the boundary conditions are manifestly covariant. The formalism is applied to the study of the gravitational collapse of homogeneous charged spherical shells. The law of conservation of energy, obtained by integrating the equations of motion of the shell and interpreted in full analogy with the special theory of relativity, is the starting point in analyzing the equilibrium states and the motion of the shells. It is concluded that no charge, however high it may be, can stop the gravitational collapse of the shell below the upper Nordström radius.  相似文献   

4.
Theoretical analysis is performed on the linear dynamic equations of thin cylindrical shells to find the error committed by making the Donnell assumption and the neglect of in-plane inertia. At first, the effect of these approximations is studied on a shell with classical simply supported boundary condition. The same approximations are then investigated for other boundary conditions from a consistent approximate solution of the eigenvalue problem. The Donnell assumption is valed at frequencies high compared with the ring frequencies, for finite length thin shells. The error in the eigenfrequencies from omitting tangential inertia is appreciable for modes with large circumferential and axial wave lengths, independent of shell thickness and boundary conditions.  相似文献   

5.
The theory of free vibration for orthotropic shells of revolution with arbitrary homogeneous boundary conditions is developed. The essence of the method is to decompose the overall shell into a number of so-called cylindrical, conical, and plate “maxi-elements”. Since the eigenfunctions of each of the individual maxi-elements are analytically determined directly from the solution of the governing differential equations, the procedure has the advantage of requiring significantly fewer elements compared with the usual finite element or finite difference procedures. For the conical shell and the plate, the method of solution is novel, while the solution for the cylindrical shell has been published by the first author. The versatility and accuracy of the method is shown through the inclusion of a number of examples which present the excellent correlation with test results and other numerical schemes.  相似文献   

6.
仝博  李永清  朱锡  张焱冰 《声学学报》2020,45(3):415-424
为了获得任意角度铺层的多层复合材料圆柱壳的自由振动准确解,在三维弹性理论的基础上,结合分层理论和状态空间法,建立横向位移和应力的传递矩阵,轴向和环向位移采用双螺旋模式的位移函数,对任意角度铺层复合材料圆柱壳简支边界条件下的自由振动进行了理论推导,得到了自由振动方程的精确形式。与文献理论解和有限元计算结果对比,结果表明,关注频率在2倍的环频率以下时,薄壳的固有频率计算精度能控制在1%以内,厚壳的固有频率计算精度能控制在2%以内。对于厚壳的计算可将壳体沿厚度方向划分为多层来处理,这样能有效提高计算精度。计算分析了铺层角对壳体固有频率的影响,环向模态数较低时,固有频率随着铺层角的增加呈抛物线变化趋势;环向模态数较高时,固有频率随着铺层角的增大单调递增。该理论方法同样适用于均质各向同性壳和正交各向异性圆柱壳。   相似文献   

7.
A finite-element algorithm is proposed to investigate the dynamic behavior of elastic shells of revolution containing a quiescent or a flowing inviscid fluid in the framework of linear theory. The fluid behavior is described using the perturbed velocity potential. The shell behavior is treated in the framework of the classical shell theory and variational principle of virtual displacements incorporating a linearized Bernoulli equation for calculation of hydrodynamic pressure acting on the shell. The problem reduces to evaluation and analysis of the eigenvalues in the connected system of equations obtained by coupling the equations for velocity perturbations with the equations for shell displacements. For cylindrical shells, the results of numerical simulations are compared with recently published experimental, analytical and numerical data. The paper also reports the results of studying the dynamic behavior of shells under various boundary conditions for the perturbed velocity potential. The investigation made for conical shells has shown that under certain conditions an increase in the cone angle can change a divergent type of instability to a flutter type.  相似文献   

8.
This paper presents the free vibrational characteristics of isotropic coupled conical-cylindrical shells. The equations of motion for the cylindrical and conical shells are solved using two different methods. A wave solution is used to describe the displacements of the cylindrical shell, while the displacements of the conical sections are solved using a power series solution. Both Donnell-Mushtari and Flügge equations of motion are used and the limitations associated with each thin shell theory are discussed. Natural frequencies are presented for different boundary conditions. The effect of the boundary conditions and the influence of the semi-vertex cone angle are described. The results from the theoretical model presented here are compared with those obtained by previous researchers and from a finite element model.  相似文献   

9.
In this paper, the free vibrations of elastic in vacuo circular toroidal shells under different boundary conditions are studied using the linear Sanders thin shell theory. Beam functions are used to describe the motion along the meridional direction whilst trigonometric functions are used to represent the deformation of the cross section. It is shown that both the natural frequencies and the mode shapes can be accurately predicted as long as the employed beam functions satisfy the boundary conditions at the ends of the shells. The dependence of the free vibration characteristics of an elastic toroidal shell upon boundary conditions and toroidal to cross-sectional radius ratio is also illustrated and explained in this paper.  相似文献   

10.
The effect of elastic end rings on the eigenfrequencies of thin cylindrical shells is studied by using an exact solution of the linear eigenvalue problem. The out-of-plane and torsional rigidities of the rings are responsible for the overall shell stiffness. Considerable mode interaction exists for modes with low circumferential wave numbers when the mass of the ring is comparable with that of the shell. The hypothetical simply supported and clamped boundary conditions are practically impossible to realize with a finite-mass ring for relatively short and thin shells.  相似文献   

11.
An analysis is presented for the vibration and stability of a circular cylindrical shell subjected to a torque. The displacements of a circular shell are written in a series of beam eigenfunctions satisfying the boundary conditions. The kinetic and strain energies of the shell are evaluated analytically, and the frequency eauation of the shell is derived by the Ritz method. The method is applied to circular cylindrical shells under two types of boundary conditions at the edges; the natural frequencies and the divergence torques are calculated numerically, and the effects of the thickness ratio, length ratio and edge conditions on the vibration and stability are studied.  相似文献   

12.
This paper concerns the free vibrations of cylindrical shells with elastic boundary conditions. Based on the Flügge classical thin shell theory, the equations of motion for the cylindrical shells are solved by the method of wave propagations. The wave numbers are obtained by directly solving an eighth order equation. The elastic-support boundary conditions can be arbitrarily specified in terms of 8 independent sets of distributed springs. All the classical homogeneous boundary conditions can be considered as the special cases when the stiffness for each set of springs is equal to either infinity or zero. The present solutions are validated by the results previously given by other researchers and/or obtained using finite element models. The effects on the frequency parameters of elastic restraints are investigated for shells of different geometrical characteristics.  相似文献   

13.
A solution of a non-homogeneous orthotropic elastic cylindrical shell for axisymmetric plane strain dynamic thermoelastic problems is developed. Firstly, a new dependent variable is introduced to rewrite the governing equation, the boundary conditions as well as the initial conditions. Secondly, a special function is introduced to transform the inhomogeneous boundary conditions to the homogeneous ones. Then by virtue of the orthogonal expansion technique, the equation with respect to the time variable is derived, of which the solution can be obtained. The displacement solution is finally presented, which can degenerate in a rather straightforward way to the solution for a homogeneous orthotropic cylindrical shell and isotropic solid cylinder as well as that for a non-homogeneous isotropic cylindrical shell. Using the present method, integral transform can be avoided. It is fit for a cylindrical shell with arbitrary thickness subjected to arbitrary thermal loads. It is also very convenient to deal with dynamic thermoelastic problems for different boundary conditions. Besides, the numerical calculation involved is very easy to be performed. Several examples are presented.  相似文献   

14.
An analysis is presented for the free vibration of joined conical-cylindrical shells. The governing equations of vibration of a conical shell, including a cylindrical shell as a special case, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the matrix has been determined, the entire structure matrix is obtained by the product of the transfer matrices of the shells and the point matrix at the joint, and the frequency equation is derived with terms of the elements of the structure matrix under the boundary conditions. The method has been applied to a joined truncated conical-cylindrical shell and an annular plate-cylindrical shell system, and the natural frequencies and the mode shapes of vibration calculated numerically. The results are presented.  相似文献   

15.
A finite element analysis for free vibration behaviour of doubly curved stiffened shallow shells is presented. The stiffened shell element is obtained by the appropriate combinations of the eight-/nine-node doubly curved isoparametric thin shallow shell element with the three-node curved isoparametric beam element. The shell types examined are the elliptic and hyperbolic paraboloids, the hypar and the conoidal shells. The accuracy of the formulation is established by comparing some of the authors' results of specific problems with those available in the literature. Numerical results of additional stiffened shells are also presented to study the effects of various parameters of shells and stiffeners such as orientation (i.e., along x -/y -/both x and y directions), type (concentric, eccentric at top and eccentric at bottom) and number of stiffeners, stiffener depth to shell thickness ratio, and aspect ratio, shallowness and boundary conditions of shells on free vibration characteristics.  相似文献   

16.
We study scalar condensations around asymptotically Anti-de Sitter (AdS) regular reflecting shells. We show that the charged scalar field can condense around charged reflecting shells with both Dirichlet and Neumann boundary conditions. In particular, the radii of the asymptotically AdS hairy shells are discrete, which is similar to cases in asymptotically flat spacetimes. We also provide upper bounds for the radii of the hairy Dirichlet reflecting shells and above the bound, the scalar field cannot condense around the shell.  相似文献   

17.
In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge–Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency–amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.  相似文献   

18.
Large-amplitude (geometrically nonlinear) forced vibrations of circular cylindrical shells with different boundary conditions are investigated. The Sanders-Koiter nonlinear shell theory, which includes in-plane inertia, is used to calculate the elastic strain energy. The shell displacements (longitudinal, circumferential and radial) are expanded by means of a double mixed series: harmonic functions for the circumferential variable and three different formulations for the longitudinal variable; these three different formulations are: (a) Chebyshev orthogonal polynomials, (b) power polynomials, and (c) trigonometric functions. The same formulation is applied to study different boundary conditions; results are presented for simply supported and clamped shells. The analysis is performed in two steps: first a liner analysis is performed to identify natural modes, which are then used in the nonlinear analysis as generalized coordinates. The Lagrangian approach is applied to obtain a system of nonlinear ordinary differential equations. Different expansions involving from 14 to 34 generalized coordinates, associated with natural modes of both simply supported and clamped-clamped shells, are used to study the convergence of the solution. The nonlinear equations of motion are studied by using arclength continuation method and bifurcation analysis. Numerical responses obtained in the spectral neighborhood of the lowest natural frequency are compared with results available in literature.  相似文献   

19.
In this paper, the Ritz minimum energy method, based on the use of the Principle of Virtual Displacements (PVD), is combined with refined Equivalent Single Layer (ESL) and Zig Zag (ZZ) shell models hierarchically generated by exploiting the use of Carrera's Unified Formulation (CUF), in order to engender the Hierarchical Trigonometric Ritz Formulation (HTRF). The HTRF is then employed to carry out the free vibration analysis of doubly curved shallow and deep functionally graded material (FGM) shells. The PVD is further used in conjunction with the Gauss theorem to derive the governing differential equations and related natural boundary conditions. Donnell–Mushtari's shallow shell-type equations are given as a particular case. Doubly curved FGM shells and doubly curved sandwich shells made up of isotropic face sheets and FGM core are investigated. The proposed shell models are widely assessed by comparison with the literature results. Two benchmarks are provided and the effects of significant parameters such as stacking sequence, boundary conditions, length-to-thickness ratio, radius-to-length ratio and volume fraction index on the circular frequency parameters and modal displacements are discussed.  相似文献   

20.
Shallow electron spin echo envelope modulations due to dipole-dipole couplings between electron spins provide information on the radial distribution function of the spins in disordered systems while angular correlations between spin pairs are negligible. Under these conditions and in the absence of orientational selection, the dipolar time evolution data can be quantitatively simulated for arbitrary radial distribution functions by shell factorization, i.e., by performing the orientational average separately for thin spherical shells and multiplying the signals of all the shells. For distances below 5 nm, a linear superposition of the signals of the shells is sufficient. The dipolar time evolution data can be separated into this linear contribution and a nonlinear background. The linear contribution can then be converted directly to a radial distribution function. For a series of shape-persistent and flexible biradicals with end-to-end distances between 2 and 5 nm, shell factorization and direct conversion of the data are in good agreement with each other and with force-field computations of the end-to-end distances. The neglect of orientation selection does not cause significant distortions of the determined distance distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号