共查询到19条相似文献,搜索用时 64 毫秒
1.
为了快速获取大田玉米作物长势信息, 基于多光谱图像开展了大田玉米叶绿素指标的非破坏性诊断研究。应用自主开发的2-CCD多光谱图像感知系统, 在田间采集玉米冠层可见光[Blue(B), Green(G), Red(R);400~700 nm]和近红外(Near-infrared: NIR, 760~1 000 nm)图像, 并使用SPAD同步测量样本叶绿素指标。采集后图像经自适应平滑滤波处理后, 进行图像玉米植株提取。为了选择最优算法实现玉米植株与杂草、土壤背景的分割, 首先比较了最大类间方差(OTSU)分割算法和局部阈值处理分割算法, 选取了基于局部统计的可变阈值处理方法对玉米NIR图像进行初步分割, 进而采用区域标记算法进行精细分割, 分割准确率达95.59%。将分割结果应用于玉米植株可见光图像R, G, B各通道, 从而实现了玉米植株多光谱图像中可见光图像的整体分割。基于分割后R, G, B和NIR四个通道的玉米冠层图像, 提取了各通道图像灰度均值(ANIR, ARed, AGreen和ABlue)并计算了归一化植被指数(NDVI)、比值植被指数(RVI)和绿色归一化植被指数(NDGI)作为光谱特征参数, 建立了玉米冠层叶绿素指标诊断的偏最小二乘法回归模型。结果表明, 建模R2达0.596 0, 预测R2达0.568 5, 该方法通过玉米多光谱图像特征参数评估叶片叶绿素含量, 可为大田玉米长势监测提供支持。 相似文献
2.
水是植物正常生长发育必不可缺的元素之一,能够快速检测并获取植物叶片水分,对田间作物灌溉生产管理和作物的生理需水特性研究等具有重要的意义。利用RedEdge-M型号多光谱相机,以不同生育期的55组玉米叶片作为试验对象,在光线充足且无阴影遮挡的环境下对试验玉米叶片样本进行拍摄,拍摄过程中通过直连下行光传感器来消除太阳高度角对光谱反射的影响,每组玉米叶片样本经过拍摄可得到蓝、绿、红、近红外和红边等5个波段的TIFF图像。借助图像处理软件ENVI5.3构建玉米叶片样本兴趣区域(ROI),以ROI范围内玉米叶片样本的平均反射光谱作为该样本的反射光谱来减小镜头边缘减光现象带来的误差。参照标准白板出厂时提供的专属标定反射率、白板ROI范围内的平均反射光谱和玉米叶片样本白板ROI范围内的平均反射光谱,比值换算得到各组玉米叶片5个波段处的光谱反射率。同时利用YLS-D型号植物营养测定仪,采用五点取样法选择玉米叶片的5个区域测取玉米叶片样本的水厚度平均值作为叶片含水量的测量指标。随机选取43组玉米叶片样本得出的光谱反射率作为训练样本,采用BP神经网络建立基于多光谱图像的玉米叶片含水量反演模型,并融合莱文贝格-马夸特理论(Levenberg-Marquardt,L-M)进行经典神经网络现有缺点的改进。输入神经元数目为5个,即蓝、绿、红、近红外和红边等5个波段图像对应的反射率,输出神经元为1个,即玉米叶片含水量。剩余12组玉米叶片作为验证样本用于模型反演数据的相关性分析,结果表明,利用多光谱图像光谱信息并结合基于Levenberg-Marquardt方法改进后BP神经网络玉米叶片含水量反演模型,模型反演的拟合相关系数能达到0.896 37, 12组验证集中玉米叶片含水量参考值和反演值的相关系数r达到0.894 8,反演结果比较理想。可以实现对玉米叶片含水量的快速准确检测,对精准农业的推广和应用提供了方法和参考依据。 相似文献
3.
无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究 总被引:6,自引:0,他引:6
叶绿素含量是植物生长中的重要参数,与农作物产量密切相关。无人机遥感技术作为一种新的数据获取手段,在农业中已得到广泛应用。以玉米为目标作物,将具有不同光谱响应函数的两种轻小型多光谱传感器(MCA和Sequoia),同时搭载在六旋翼无人机上,获取不同氮肥水平下大田玉米花期的多光谱影像。利用无人机影像空间分辨率高的特点,在小区尺度上,分别计算了基于两种多光谱传感器的各26种植被指数,并将其与地面实测的叶绿素含量(SPAD)值进行回归分析,研究不同波段反射率对SPAD值的敏感性,利用不同多光谱传感器及植被指数预测SPAD值的精度及稳定性。结果表明,对于具有较宽波段的Sequoia,在550 nm(绿波段)、735 nm(红边波段)的反射率对SPAD值的变化较敏感,其中,550 nm与SPAD值的相关系数最大(R2=0.802 9)。而对于较窄波段的MCA,720 nm(红边波段)的反射率与SPAD值具有较高的相关性(R2=0.724 8),550 nm(绿波段)次之。此外,由于两传感器红波段的中心波长和波段宽度不同,660 nm(Sequoia)反射率与SPAD值的相关系数为0.778 6,而680 nm(MCA)反射率与SPAD值的相关性较小,仅为0.488 6。利用无人机多光谱遥感技术预测大田玉米的SPAD值精度较高,但对于不同的多光谱传感器而言,同一植被指数却表现出较大的差异,其中,红波段和近红外波段组合构造的植被指数RVI,NDVI,PVI和MSR差异较大,具有较宽波段的Sequoia传感器优于窄波段的MCA;此外,对于Sequoia相机,GNDVI与RENDVI预测SPAD值的精度较高,RMSE分别为3.699和3.691;对于MCA相机,RENDVI预测精度最高(RMSE=3.742),GNDVI预测精度低于RENDVI(RMSE=3.912);两传感器中MCARI/OSAVI预测SPAD值精度均较低,RMSE分别为7.389(Sequoia)和7.361(MCA)。在所有的植被指数中,利用绿波段和近红外波构造的植被指数(G类),以及用红边波段和近红外波段构造的植被指数(RE类),预测SPAD值精度更高,均高于红外和近红外波段构造的植被指数;利用更多波段(三个及以上)组合构造的复杂植被指数,并不能显著提高预测精度。就预测模型而言,MCARI1更适用于对数模型,可有效提高预测精度, 而其他植被指数变化不显著。研究还发现,在小区水平SPAD值的预测方面,除NDVI和TVI,Sequoia相机对于不同氮肥条件下植被覆盖度、阴影和裸露土壤等环境背景因素具有较强的抗干扰能力;而对于MCA相机来说,TVI,DVI,MSAVI2,RDVI和MSAVI对环境背景因素非常敏感,预测SPAD精度低;此外,去除环境背景因素并不总是能够提高SPAD值的预测精度。本研究对于利用无人机多光谱遥感技术进行高精度的叶绿素含量预测具有指导意义,对于精准农业的推广和应用具有一定的借鉴价值。 相似文献
4.
一种面向多光谱图像的打印分色方法 总被引:3,自引:1,他引:2
为解决多光谱图像打印输出问题,提出一种用非线性优化技术实现光谱图像打印分色的方法,以同时提高再现图像的光谱精度和色度精度.从分析打印系统成色机理及Neugebauer光谱模型入手,比较了图像光谱特性和色度特性对打印效果的影响,可知输出图像光谱误差和色度误差对打印质量均至关重要;据此构造了图像光谱误差和色度误差目标函数,分别反映再现图像的光谱精度和色度精度,并根据实际打印过程对各打印基色的墨量控制值进行约束;最后采用非线性优化方法,逐点计算图像光谱对应的墨量控制值,实现打印分色.实验表明,该方法能同时兼顾再现图像的光谱精度和色度精度,与仅考虑光谱误差的迭代分色方法相比,再现色度精度能提高约3~10倍. 相似文献
5.
为了实现油菜叶片中叶绿素含量的快速无损检测,开发了手持式多光谱成像系统用于采集油菜叶片在460,520,660,740,840和940 nm 六个波段的光谱图像。将一台能够采集可见光/近红外(380~1 023 nm)512个波段光谱图像但是价格高昂且体积大的室内高光谱成像系统作为参考仪器,将手持式多光谱成像系统作为目标仪器后,采用伪逆法(pseudo-inverse method)求得高光谱成像系统和多光谱成像系统两台仪器之间的转换矩阵F,从而实现6个波段的多光谱图像向512个波段的高光谱图像的重构,提高了手持式设备的光谱分辨率。运用偏最小二乘回归算法(PLSR)建立了重构的光谱与油菜叶片的叶绿素含量之间的关系模型。结果表明,重构的可见光范围内的光谱反射率与叶绿素浓度之间具有很强的相关性,PLSR回归模型建模集的决定系数R2c为0.82,建模集均方根误差RMESC为1.98,预测集的决定系数R2p为0.78,预测集均方根误差RMESP为1.50,RPD为2.14。虽然应用本文开发的手持式成像系统结合PLSR模型实现油菜叶绿素含量快速无损预测的精度低于基于室内高光谱成像系统获得的高光谱图像建立的PLSR模型(R2c,RMESC,R2p,RMESP和RPD分别为0.90,1.41,0.82,1.36和2.37),但是明显优于基于原始多光谱成像系统4个波段(460,520,660和740 nm)反射率建立的PLSR模型得到的结果(R2c,RMESC,R2p,RMESP和RPD分别为0.78,2.06,0.72,1.85和1.88)。表明光谱重构技术可提高多光谱成像预测油菜叶绿素含量的精度,并且与室内高光谱成像系统相比,开发的手持式设备具有体积小、成本低廉和操作简便等优点,可为田间油菜叶片的生理状态和养分检测及可视化表达提供技术支持。 相似文献
6.
基于多光谱图像的烟雾检测 总被引:2,自引:0,他引:2
烟雾检测对于火灾早期防范非常重要,传统的智能视频和图像处理技术易受背景运动信息影响,抗干扰性差,且不容易区分森林水雾和燃烧产生的烟雾,森林防火误报率高。为此提出一种新的多光谱图像检测方法检测烟雾。采用多光谱成像系统,获取400至720 nm波段范围的烟雾、水雾光谱图像序列,对图像进行分层像素整合处理;利用欧氏距离度量不同分块光谱特征差异,获取动态区域光谱特征向量,根据目标与背景间光谱特征向量差异,提取烟雾、水雾区域。室内外试验结果表明:多光谱图像检测方法可用于烟雾检测,能够有效地检测并区分烟雾和水雾,与视频图像方法结合,可有效地用于森林火灾监测,降低森林火灾检测误报率。 相似文献
7.
8.
基于实测端元光谱的多光谱图像光谱模拟研究 总被引:2,自引:0,他引:2
地物光谱特性是遥感应用的基础。然而,在基于野外实测端元光谱的遥感应用中,由于测量尺度不同,导致同一地物光谱形态和反射率值存在很大差异,为遥感信息的定量反演带来困难。文章以新疆塔里木盆地北缘渭干河-库车河绿洲为研究区,选取裸土、植被两类地物作为研究对象,首先通过AVNIR-2传感器的光谱响应函数,实现了将野外实测端元光谱拟合为多光谱离散光谱,通过实例数据表明,拟和的多光谱与AVNIR-2像元光谱具有很好的相关性,在此基础上,采用线性算法建立端元光谱与遥感图像像元光谱的转换模型,实现了从实测端元光谱尺度向遥感多光谱像元尺度的定量光谱转换,为遥感定量分析奠定了一定基础。 相似文献
9.
实用型模块化成像光谱仪多光谱图像的信噪比估算及压缩方法研究 总被引:2,自引:4,他引:2
采用局部标准差法和去相关法对实用型模块化成像光谱仪多光谱图像的信噪比进行估算。这两种方法已将地物变化的影响降低到很低的程度。这样在大气订正后,图像的信噪比性能充分反映出遥感仪器的信噪比性能。针对图像压缩,提出控制各波段恢复图像的峰值信噪比刚好大于原始图像的信噪比,使由压缩算法本身所带来的噪声限制在原始图像的噪声范围之内。结合这种压缩思想,用基于离散余弦变换和基于离散小波变换的压缩算法,对实用型模块化成像光谱仪多光谱图像进行压缩。实验表明,利用这种方法,对于高信噪比的波段,图像信息得到了保真;对低信噪比的波段,压缩倍数提高迅速且恢复图像视觉无失真,对整幅成像光谱图像,压缩性能提升显著——当压缩比等于37.95倍时,峰值信噪比等于45.86dB。 相似文献
10.
11.
综合使用光谱技术对作物养分进行实时、有效诊断,有助于作物的精准管理、保障产量和减少环境污染,提高肥料利用率,并且为定量估测作物生化组分状况提供了一种新的途径.光谱指数是进行作物叶片叶绿素实时估测的重要指标,然而由于受到环境条件及内在生化成分的影响,估测结果不尽满意.为了进一步提高光谱指数在估测作物叶片叶绿素含量时的抗干... 相似文献
12.
针对基于多光谱数据有限光谱信息重建地表反射率光谱的病态求解难题,提出一种基于冠层辐射传输物理机理并充分考虑像元异质性的地表反射率光谱重建方法,该方法假设混合像元由植被和土壤两种地物类型组成,利用冠层辐射传输模型构造端元光谱查找表,进而通过组分比例因子估算实现基于多光谱图像的高光谱地表反射率模拟。以Landsat ETM+多光谱图像为例的地表反射率超光谱重建验证实验结果表明,模拟的反射率光谱能够较好的反映不同地物特征信息。进一步地,利用模拟的地表反射率拟合Landsat ETM+图像和MODIS图像,各波段模拟图像与实际观测图像之间具有较高的相关系数(Landsat: 0.90~0.99, MODIS: 0.74~0.85),进一步验证了该方法的可行性。 相似文献
13.
光谱指数的植物叶片叶绿素含量估算模型 总被引:4,自引:0,他引:4
叶片叶绿素能够有效监测植被的生长状况,利用光谱指数反演植被叶绿素含量是目前的通用方法。实测了盐生植物光谱反射率和叶片叶绿素含量。对SPAD值进行变换,对比Pearson与VIP方法探讨盐生植被叶片叶绿素含量与植被指数的相关性并进行精度验证,从中选出最佳拟合模型。研究表明,通过对Pearson与VIP相关性分析,最终选定VIP方法建立植被指数的叶片叶绿素估算模型,NDVI705,ARVI,CIred edge,PRI,VARI,PSRI和NPCI的VIP值均大于0.8,因此选定这七个植被指数为最优植被指数;预测结果显示,所有模型的相关性都在0.7以上,预测值与实测值相关性最好的是经过倒数变换的SPAD值,R=0.816,RMSE=0.007。基于VIP方法的反演模型能较好地估算研究区植被叶绿素含量,该方法为植物叶绿素含量诊断的实际应用提供了重要的理论依据和技术支持。 相似文献
14.
为了能准确研究韧窝直径与常规力学性能之间的关系,尽量减小在测量中人为因素的影响,本文采用计算机图像处理技术对韧性断裂产生的等轴韧窝图像进行辅助分析,应用自适应模糊阈值分割法对预处理后的韧窝图像进行二值分割,很好的实现了韧窝与背景的分离。并且根据韧窝直径的大小对韧窝进行了分类。为了能快速准确的获得韧窝直径,对基于Freeman链码的多区域面积的算法进行了改进,改进后的方法实现简单,计算量小,测得韧窝直径的结果准确。 相似文献
15.
16.
归一化植被指数(NDVI)基于可见光的红色波段(630~680 nm)和近红外区(780~1 100 nm)的反射光谱进行计算,被认为是作物营养与长势诊断的重要指标。为了低成本、快速、无损的检测作物叶绿素含量,计算植株的NDVI并呈现作物的NDVI分布情况,并通过不同角度图像的分析,监测作物营养分布与动态。利用可见光和近红外波段双目成像技术获取图像,在讨论可见光(RGB)和近红外(NIR)图像的匹配算法的基础上,经图像分割与光照影响校正后,针对不同测试角度建立了作物植被指数空间分布图,并对其空间分布特征与影响因素进行了可视化分析。试验利用可见光和近红外双目相机对51株玉米植株,分别在90°,54°和35°视角下同步采集RGB和NIR图像。对RGB和NIR图像分别进行高斯滤波和拉普拉斯算子增强预处理后,选取了SURF,SIFT和ORB共3种图像匹配算法,并首先利用其进行RGB-NIR图像匹配对齐,以匹配时间(Time), 峰值信噪比(PSNR), 信息熵(MI)和结构相似性(SSIM)4个参数作为匹配性能评价指标,分别从时间、准确性、稳定性三个方面综合确定最优匹配方法。其次,研究玉米植株的分割方法包括超绿算法(ExG)和最大类间方差算法(OTSU),分别实现图像中作物和背景的分离,提取分割后的RGB图像R(Red), G(Green), B(Blue)分量和NIR图像分量。基于HSI颜色模型,提取I分量讨论了光照对图像的影响,并利用多灰度级标准板建立了植株光谱反射率校正线性公式。然后,利用R(Red)和NIR图像分量计算图像中每个像素的NDVI值,绘制作物植被指数的空间分布图,从而对比分析了不同拍摄角度下光谱植被指数的分布特征。通过不同角度图像的NDVI分布情况,展示监测作物植株不同位置的叶绿素分布情况。结果显示,RGB-NIR图像匹配时间SIFT(1.865 s)>SURF(1.412 s)>ORB(1.121 s),匹配准确性上SURF≈SIFT>ORB,匹配稳定性上SURF>SIFT>ORB,综合比较选取SURF为最优匹配算法。采用4灰度级标准板对R, G, B, NIR分量校正模型的R2分别为0.78,0.76,0.74,0.77。90°和35°视角分别展现了作物叶和茎的NDVI植被指数分布情况,可为分析和监测作物的营养分布提供技术支持。 相似文献
17.
基于光谱分析的草地叶绿素含量估测植被指数 总被引:2,自引:0,他引:2
对现有叶绿素遥感估测研究方法进行比较,确定植被指数法是其中最实用、普适性最强的研究方法。近年来,草地退化问题日益严峻,需要进一步从光谱分析、植物生化参数估测的角度加以研究,因而亟需建立一种用于反演草地植被叶绿素含量的植被指数。首先对四川省松潘草原和内蒙古自治区贡格尔草原的草地实测反射率光谱曲线及其一阶微分曲线进行分析,通过这两种光谱与叶绿素含量的相关性分析,找到红边区域(red-edge position, REP)与草地叶绿素含量之间的规律,即叶绿素含量越高,反射率一阶微分曲线的红边拐点(red-edge inflection point, REIP)取值越高,由此构建草地叶绿素含量估测植被指数(grassland chlorophyll index, GCI),选取最适宜反演的波段,最后采用卫星高光谱影像计算GCI,将计算结果与野外试验观测的叶绿素含量数据进行精度分析验证。结果证明,对于草地叶绿素含量来说,GCI比其他叶绿素指数的敏感性更强,具有较高的草地叶绿素含量估测精度。GCI是第一个针对草地叶绿素含量估测而被提出的植被指数,其对遥感反演草地叶绿素含量具有广泛应用潜力。同时这种基于光谱分析的草原植被叶绿素含量估测方法为其他的草原植被生化参数估测、草原植被生长状况评价以及草地生态环境变化大面积监测提供了新的研究思路。 相似文献
18.
There are various distributions of image histograms where regions form symmetrically or asymmetrically based on the frequency of the intensity levels inside the image. In pure image processing, the process of optimal thresholding tends to accurately separate each region in the image histogram to obtain the segmented image. Otsu’s method is the most used technique in image segmentation. Otsu algorithm performs automatic image thresholding and returns the optimal threshold by maximizing between-class variance using the sum of Gaussian distribution for the intensity level in the histogram. There are various types of images where an intensity level has right-skewed histograms and does not fit with the between-class variance of the original Otsu algorithm. In this paper, we proposed an improvement of the between-class variance based on lognormal distribution, using the mean and the variance of the lognormal. The proposed model aims to handle the drawbacks of asymmetric distribution, especially for images with right-skewed intensity levels. Several images were tested for segmentation in the proposed model in parallel with the original Otsu method and the relevant work, including simulated images and Medical Resonance Imaging (MRI) of brain tumors. Two types of evaluation measures were used in this work based on unsupervised and supervised metrics. The proposed model showed superior results, and the segmented images indicated better threshold estimation against the original Otsu method and the related improvement. 相似文献
19.
基于多角度成像数据的新型植被指数构建与叶绿素含量估算 总被引:1,自引:0,他引:1
叶绿素含量的快速估算对于及时了解作物的长势、病虫害监测以及产量的评估都具有重要意义。利用自主研发的多角度成像观测系统获取了不同生育期玉米的高光谱影像,精确地提取出主平面内各个观测角度下玉米冠层的反射率。通过对ACRM模型模拟值和实测值的分析,计算出玉米冠层红波段下的热点-暗点指数(HDS),并利用该指数对TCARI进行改进,提出一个基于多角度观测的新型植被指数HD-TCARI,最后使用多角度高光谱成像数据对其进行了地面验证。结果表明,HD-TCARI能够减小LAI对叶绿素估算的影响,当叶绿素浓度大于30 μg·cm-2,HD-TCARI与LAI的相关性R2仅为26.88%~28.72%;当叶绿素浓度较高时,HD-TCARI具有抗“饱和”的特性在LAI在1~6之间变化时,HD-TCARI与叶绿素浓度的线性关系R2较TCARI提高了约9%左右。利用多角度高光谱成像数据对HD-TCARI进行地面验证,其与叶绿素浓度的线性关系(R2=66.74%)明显优于TCARI所建立的估算模型(R2=39.92%),证明了HD-TCARI指数具有更好地估算叶绿素浓度的潜力。 相似文献