共查询到15条相似文献,搜索用时 62 毫秒
1.
针对马铃薯空心病的难以检测问题, 提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine, SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个, 空心75个)作为研究对象, 搭建了马铃薯半透射高光谱图像采集系统, 采集了马铃薯样本半透射高光谱图像(390~1 040 nm), 对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理, 建立了全波段的SVM判别模型, 模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能, 采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择, 最终确定了8个光谱特征变量(454, 601, 639, 664, 748, 827, 874和936 nm), 所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm, AFSA)、遗传算法(genetic algorithm, GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析, 确定AFSA为最优优化算法, 最优模型参数为c=10.659 1, g=0.349 7, 确定AFSA-SVM模型为马铃薯空心病的最优识别模型, 该模型总体识别率达到100%。试验结果表明: 基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测, 也为马铃薯空心病的快速无损检测提供技术支持。 相似文献
2.
针对马铃薯损伤部位随机放置会影响检测精度的问题,提出从正对相机、背对相机及侧对相机三个方向,应用透射和反射高光谱成像技术采集马铃薯图像,进行透射和反射高光谱成像的马铃薯损伤检测比较研究。对透射和反射高光谱图像进行独立成分(IC)分析和特征提取,利用所得特征对反射图像进行二次IC分析,对透射和反射光谱进行变量选择,最终分别建立基于反射图像、反射光谱、透射光谱的马铃薯损伤定性识别模型;对识别准确率高的模型做进一步优化,采用子窗口排列分析(SPA)算法对透射光谱的特征做二次选择得到3个光谱变量,并建立任意放置的马铃薯损伤识别最优模型。试验结果表明,基于反射图像、反射光谱建立的模型识别准确率较低,其中基于反射图像的马铃薯碰伤,侧对相机识别准确率最低为43.10%;基于透射光谱信息建立的模型识别准确率较高,损伤部位正对、背对相机的识别准确率均为100%,侧对相机为99.53%;马铃薯损伤识别最优模型对任意放置的损伤识别准确率为97.39%。应用透射高光谱成像技术可以检测任意放置方向下的马铃薯损伤,该研究可为马铃薯综合品质的在线检测提供技术支持。 相似文献
3.
高光谱技术诊断马铃薯叶片晚疫病的研究 总被引:2,自引:0,他引:2
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018 nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。 相似文献
4.
基于支持向量机的水稻叶面积指数高光谱估算模型研究 总被引:2,自引:1,他引:2
为了研究支持向量机(SVM)对于作物农学参数高光谱估算的能力,通过大田小区试验,测定了2个品种、3个供氮水平处理的水稻在不同生长期的冠层高光谱反射率(350~2 500 nm)。依据Ladsat-5的TM传感器波段宽度,将高光谱反射率转换为10种不同的植被指数。利用所有样本的植被指数和水稻叶面积指数(LAI),通过不同统计模型的模拟分析,依据模型的R2选取了三种相关性较高的统计关系(包括NDVIgreen的指数关系、TCARI/OSAVI的乘幂关系和RVI2的乘幂关系)。对这三种关系,通过具有不同核函数的SVM模型和相应统计模型对LAI进行估算。结果表明:所有的SVM模型都具有较低的均方根误差值,估算精度都高于相应的统计模型;基于TCARI/OSAVI的POLY核SVM具有最高的估算精度,其RMSE比相应的统计模型降低近11个百分点。因此,SVM方法用于水稻LAI高光谱估算具有良好的学习能力和鲁棒性。 相似文献
5.
玉米是世界主要粮食作物之一,使用不符合国家标准的劣质种子将严重影响玉米作物产量,如何快速准确高效鉴别劣质玉米种子亟待解决。采用高光谱图像系统获取900粒“豫安三号”玉米种子的900~1 700 nm光谱曲线,其中训练集和测试集比例为3∶2,分别为540粒和360粒。利用电鼓风式烘干箱对种子损伤处理,获得不同损伤程度的玉米种子样本,采集光谱后完成发芽试验,以此判别种子活力。为提高信噪比,截取963.27~1698.75 nm范围内的玉米种子光谱波段作为有效波段;采用标准正态变换(SNV)、多元散射校正(MSC)两种预处理方式对原始光谱数据预处理,并采用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)两种特征波段提取算法对预处理后的光谱数据提取特征波段,波长反射率作为输入矩阵X,预设样本类别作为输出矩阵Y;最后采用支持向量机(SVM)模型建模分析,研究结果表明:MSC-CARS-SVM模型为最佳模型,模型识别成功率为98.33%,其Kappa系数为0.985。在此基础上,采用遗传算法(GA)对SVM中惩罚系数c和核函数参数g寻优,模型准确率提升至100%,可实现对热损伤劣质玉米种... 相似文献
6.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,Rc和Rp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。 相似文献
7.
半透射高光谱结合流形学习算法同时识别马铃薯内外部缺陷多项指标 总被引:2,自引:0,他引:2
针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,分别采集合格、外部缺陷(发芽和绿皮)和内部缺陷(空心)马铃薯样本的半透射高光谱图像,同时为了符合生产实际,将外部缺陷马铃薯的缺陷部位以正对、侧对和背对采集探头的随机放置方式进行高光谱图像采集。提取马铃薯样本高光谱图像的平均光谱(390~1 040 nm)进行光谱预处理,然后分别采用有监督局部线性嵌入(SLLE)、局部线性嵌入(LLE)和等距映射(Isomap)三种流形学习算法对预处理光谱进行降维,并分别建立基于纠错输出编码的最小二乘支持向量机(ECOC-LSSVM)多分类模型。通过分析和比较建模结果,确定SLLE为最优降维算法,SLLE-LSSVM为最优马铃薯内外部缺陷识别模型,该方法对测试集合格、发芽、绿皮和空心马铃薯样本的识别率分别达到96.83%,86.96%,86.96%和95%,混合识别率达到93.02%。试验结果表明:基于半透射高光谱成像技术结合SLLE-LSSVM的定性分析方法能够同时识别马铃薯内外部缺陷的多项指标,为马铃薯内外部缺陷的快速在线无损检测提供了技术参考。 相似文献
8.
9.
三七粉是三七的主要消费和商品形式,市场上存在以次充好、甚至是掺假的现象,由于是粉状物料,难以用肉眼判别,为了实现对不同质量等级的三七粉进行无损鉴别。将30头、40头、60头和80头的三七主根研磨成粉,制备样本。采用可见近红外高光谱成像系统(400.68~1 001.61 nm)采集4种不同头数三七粉,共计384个样品的高光谱图像,提取高光谱图像感兴趣区域(ROI)的平均光谱值作为样本原始光谱。将384个三七粉样本按2∶1的比例划分训练集和测试集。采用卷积平滑(SG)、多元散射校正(MSC)和标准正态变量变换(SNV)3种预处理方法对三七粉样本光谱信息进行预处理并建立支持向量机(SVM)分类模型,通过比较基于3种预处理方法的SVM模型测试集分类准确率,确定SNV为最优预处理方法。采用迭代保留信息变量(IRIV)、变量组合集群分析(VCPA)和变量组合集群分析混合迭代保留信息变量(VCPA-IRIV)3种特征选择方法提取SNV预处理后光谱的特征波长并建立基于特征光谱和原始光谱的SVM分类模型,通过比较基于3种特征选择方法得到的特征波长建立的SVM模型测试集分类准确率,发现将VCPA与IRIV相结合的VCPA-IRIV为最优特征选择方法。VCPA-IRIV提取了18个特征波长代替全光谱数据参与建模,该算法在降低模型复杂度的同时保持了模型的分类精度。为了提高模型的分类精度,采用引力搜索算法(GSA)对SVM模型中惩罚因子c和核参数g进行寻优,并与网格搜索(GS)的结果进行比较,结果表明,VCPA-IRIV-GSA-SVM模型分类效果最好,测试集分类准确率达到100%。可见,利用可见近红外高光谱成像对三七粉进行质量等级无损鉴别是可行的,为市场上三七粉的质量等级鉴别提供了参考。 相似文献
10.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究 总被引:2,自引:0,他引:2
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。 相似文献
11.
基于支持向量机(SVM)特征加权/选择的光谱匹配算法 总被引:1,自引:1,他引:1
高光谱数据波段多、冗余大,为了提高数据的分析效率和精度,降维是一个关键步骤。文章在文献(参考了后面的文献[18])研究的基础上,引入了迭代SVM特征选择/加权算法,为多目标遗传优化获取最优参考光谱提供一个包含有效分类信息的低维空间。基于Indiana-AVIRIS高光谱数据的实验表明,特征加权/选择的引入使光谱匹配分类精度提高了13%(相对于无特征选择的情况而言)。文章还根据光谱样本距SVM分类面的远近,定义和计算了局部权重,不仅细致刻画了同类光谱样本在局部特征空间中的分布,还使光谱相似度的计算更加灵活化,精度提高幅度达到了17%(相对于无特征选择的情况而言)。文章研究方法的提出推进了SVM在光谱数据分析中的应用深度和广度。 相似文献
12.
基于高光谱图像的即食海参新鲜度无损检测 总被引:1,自引:0,他引:1
新鲜度是即食海参加工品质调控和贮藏品质监控的关键指标。针对感官评定和现有理化检测无法满足即食海参产品大批量、标准化、工业化生产问题,提出了一种基于高光谱图像的即食海参新鲜度快速无损检测方法,通过图像主成分分析和波段比运算相结合,优选特征波长和图像;依据海参腐败机理,建立图像纹理特征与即食海参新鲜度等级间的关联模型,实现即食海参新鲜度无损、快速评价。首先针对高光谱图像巨大的数据量展开降维研究。根据即食海参体壁光谱吸收特性,以具有明显化学吸收特征的波长(474和985 nm)为分界点,获得包括全检测波段(400~1 000 nm)在内的六个待处理波段,通过分段图像主成分分析实现待测波段的优选,利用权重系数和波段比图像运算,最终将686和985 nm波段比图像确定为特征图像。面向特征图像的感兴趣区域(ROI),构建灰度共生矩阵(gray-level co-occurrence matrix, GLCM)、灰度梯度共生矩阵(gray-gradient co-occurrence matrix, GGCM)、改进的局部二元模式纹理描述子(local binary pattern,LBP),分别提取纹理参数作为输入,以挥发性盐基氮(total volatile basic nitrogen, TVB-N)检测为标准,建立经粒子群优化的BP 神经网络(back propagation,BP)即食海参新鲜度判别模型,新鲜度等级判别准确率分别为90%,95%和80%。结果表明,即食海参高光谱图像灰度梯度共生矩阵的纹理特征用于新鲜度判别效果较好。为即食海参新鲜度快速无损检测方法研究和仪器开发提供了理论基础和数据支持。 相似文献
13.
高光谱成像的猕猴桃糖度无损检测方法 总被引:1,自引:0,他引:1
猕猴桃糖度是重要的猕猴桃内部品质衡量指标.传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义.基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一... 相似文献
14.
报道了地面长波红外遥测的新进展 ,具体阐述了窗扫时空调制傅里叶光谱成像技术的实现过程.演示装置基于角锥反射镜M ichelson干涉具 ,构成了空间调制干涉 ;采用了制冷型长波红外焦平面探测器组件 ,通过对数据立方体的采集、重组、基线校正、切趾、相位校正和傅里叶变换等处理 ,实现了长波红外波段高光谱成像.自研的CHIPED-1长波红外高光谱成像原理实验装置的探测灵敏度指标噪声等效辐射通量密度NESR在单次采样时达到了5.6 × 10-8 W · (cm-1 · sr · cm2 )-1 ,与商品化时间调制干涉高光谱成像仪相当 ;反映了技术的先进性 ,并留有较大的改进空间.通过测试聚丙烯薄膜的透过率曲线 ,CHIPED-1红外高光谱成像原理实验装置的光谱响应范围达到了11. 5 μm.文章还以室外高楼和乙醚气体的探测实验为例 ,研究了二维分布化学气体VOC的高光谱成像探测方法.在复杂背景和低试验浓度情况下 ,从同一波数的红外光谱切片上 ,观察不出乙醚蒸气的存在 ,但是进行了差谱处理后 ,可以清楚看到乙醚蒸气的空间分布.高光谱方法应用在有机蒸气VOC的红外探测领域 ,相对于宽波段热成像方法 ,具有灵敏度高、抗干扰能力强和识别种类多等诸多优势. 相似文献
15.
基于光谱及成像技术的种子品质无损速测研究进展 总被引:4,自引:0,他引:4
种子是农业生产过程的重要生产资料。种子质量评价、活力与老化检测、纯度与真伪鉴别、分类与溯源研究是种子品质检测中的常见问题。种子质量主要包含种子含水率、蛋白含量、脂肪酸含量、淀粉含量等,是种子品质分级的重要指标,并且关系到种子存储过程的安全问题。种子活力是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和;高活力种子具有明显的生长优势和生产潜力。种子老化是指种子活力的自然衰退,表现为种子变色、发芽率低、生长势差、作物减产。种子的纯度与真伪则会影响作物产量和农产品品质;而种子分类与溯源则是保证种子纯度与鉴别种子真伪的重要方法,进而为作物产量与产品品质提供保障。对于种子品质分析,传统方法通常需要对样品做不可逆的破坏性分析,且分析时间长、过程复杂,难以适应现代农业对种子生产环节的需要。因此,开展种子品质无损快速检测技术研究成为当前亟待解决的问题。近年来,随着化学计量学的发展和计算机技术的进步,近红外光谱法以其快速、无损、高效等优势,在农产品、食品、农业投入品等的无损快速分析方面得以广泛的应用。进一步地,将光谱技术与成像技术相结合,高光谱成像技术近年来日益兴起,相比较于传统的光谱技术,高光谱成像技术在获得待测样品的光谱信息的同时,还可以获取样品的空间分布信息以及图像特征。基于近红外光谱及高光谱成像等无损快速检测技术,从种子质量评价、活力与老化检测、纯度与真伪鉴别、分类与溯源研究四方面对近年来关于种子品质无损快速检测文献进行综述。在分析不同检测技术特点的基础上,分别就上述种子品质检测方面的问题加以整理。进而对种子品质无损快速检测的技术特点进行了总结与展望。 相似文献