共查询到18条相似文献,搜索用时 62 毫秒
1.
针对马铃薯空心病的难以检测问题, 提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine, SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个, 空心75个)作为研究对象, 搭建了马铃薯半透射高光谱图像采集系统, 采集了马铃薯样本半透射高光谱图像(390~1 040 nm), 对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理, 建立了全波段的SVM判别模型, 模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能, 采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择, 最终确定了8个光谱特征变量(454, 601, 639, 664, 748, 827, 874和936 nm), 所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm, AFSA)、遗传算法(genetic algorithm, GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析, 确定AFSA为最优优化算法, 最优模型参数为c=10.659 1, g=0.349 7, 确定AFSA-SVM模型为马铃薯空心病的最优识别模型, 该模型总体识别率达到100%。试验结果表明: 基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测, 也为马铃薯空心病的快速无损检测提供技术支持。 相似文献
2.
针对马铃薯损伤部位随机放置会影响检测精度的问题,提出从正对相机、背对相机及侧对相机三个方向,应用透射和反射高光谱成像技术采集马铃薯图像,进行透射和反射高光谱成像的马铃薯损伤检测比较研究。对透射和反射高光谱图像进行独立成分(IC)分析和特征提取,利用所得特征对反射图像进行二次IC分析,对透射和反射光谱进行变量选择,最终分别建立基于反射图像、反射光谱、透射光谱的马铃薯损伤定性识别模型;对识别准确率高的模型做进一步优化,采用子窗口排列分析(SPA)算法对透射光谱的特征做二次选择得到3个光谱变量,并建立任意放置的马铃薯损伤识别最优模型。试验结果表明,基于反射图像、反射光谱建立的模型识别准确率较低,其中基于反射图像的马铃薯碰伤,侧对相机识别准确率最低为43.10%;基于透射光谱信息建立的模型识别准确率较高,损伤部位正对、背对相机的识别准确率均为100%,侧对相机为99.53%;马铃薯损伤识别最优模型对任意放置的损伤识别准确率为97.39%。应用透射高光谱成像技术可以检测任意放置方向下的马铃薯损伤,该研究可为马铃薯综合品质的在线检测提供技术支持。 相似文献
3.
高光谱技术诊断马铃薯叶片晚疫病的研究 总被引:2,自引:0,他引:2
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018 nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。 相似文献
4.
基于支持向量机的水稻叶面积指数高光谱估算模型研究 总被引:2,自引:1,他引:2
为了研究支持向量机(SVM)对于作物农学参数高光谱估算的能力,通过大田小区试验,测定了2个品种、3个供氮水平处理的水稻在不同生长期的冠层高光谱反射率(350~2 500 nm)。依据Ladsat-5的TM传感器波段宽度,将高光谱反射率转换为10种不同的植被指数。利用所有样本的植被指数和水稻叶面积指数(LAI),通过不同统计模型的模拟分析,依据模型的R2选取了三种相关性较高的统计关系(包括NDVIgreen的指数关系、TCARI/OSAVI的乘幂关系和RVI2的乘幂关系)。对这三种关系,通过具有不同核函数的SVM模型和相应统计模型对LAI进行估算。结果表明:所有的SVM模型都具有较低的均方根误差值,估算精度都高于相应的统计模型;基于TCARI/OSAVI的POLY核SVM具有最高的估算精度,其RMSE比相应的统计模型降低近11个百分点。因此,SVM方法用于水稻LAI高光谱估算具有良好的学习能力和鲁棒性。 相似文献
5.
玉米是世界主要粮食作物之一,使用不符合国家标准的劣质种子将严重影响玉米作物产量,如何快速准确高效鉴别劣质玉米种子亟待解决.采用高光谱图像系统获取900粒\"豫安三号\"玉米种子的900~1 700 nm光谱曲线,其中训练集和测试集比例为3:2,分别为540粒和360粒.利用电鼓风式烘干箱对种子损伤处理,获得不同损伤程度的玉米种子样本,采集光谱后完成发芽试验,以此判别种子活力.为提高信噪比,截取963.27~1698.75 nm范围内的玉米种子光谱波段作为有效波段;采用标准正态变换(SNV)、多元散射校正(MSC)两种预处理方式对原始光谱数据预处理,并采用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)两种特征波段提取算法对预处理后的光谱数据提取特征波段,波长反射率作为输入矩阵X,预设样本类别作为输出矩阵Y;最后采用支持向量机(SVM)模型建模分析,研究结果表明:MSC-CARS-SVM模型为最佳模型,模型识别成功率为98.33%,其Kappa系数为0.985.在此基础上,采用遗传算法(GA)对SVM中惩罚系数c和核函数参数g寻优,模型准确率提升至100%,可实现对热损伤劣质玉米种子的鉴别.该研究为劣质玉米种子及其他作物种子快速鉴别提供了新思路和方法. 相似文献
6.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,Rc和Rp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。 相似文献
7.
半透射高光谱结合流形学习算法同时识别马铃薯内外部缺陷多项指标 总被引:2,自引:0,他引:2
针对马铃薯内外部缺陷多项指标难以同时识别的问题,提出了一种半透射高光谱成像技术采用流形学习降维算法与最小二乘支持向量机(LSSVM)相结合的方法,该方法可同时识别马铃薯内外部缺陷的多项指标。试验以315个马铃薯样本为研究对象,分别采集合格、外部缺陷(发芽和绿皮)和内部缺陷(空心)马铃薯样本的半透射高光谱图像,同时为了符合生产实际,将外部缺陷马铃薯的缺陷部位以正对、侧对和背对采集探头的随机放置方式进行高光谱图像采集。提取马铃薯样本高光谱图像的平均光谱(390~1 040 nm)进行光谱预处理,然后分别采用有监督局部线性嵌入(SLLE)、局部线性嵌入(LLE)和等距映射(Isomap)三种流形学习算法对预处理光谱进行降维,并分别建立基于纠错输出编码的最小二乘支持向量机(ECOC-LSSVM)多分类模型。通过分析和比较建模结果,确定SLLE为最优降维算法,SLLE-LSSVM为最优马铃薯内外部缺陷识别模型,该方法对测试集合格、发芽、绿皮和空心马铃薯样本的识别率分别达到96.83%,86.96%,86.96%和95%,混合识别率达到93.02%。试验结果表明:基于半透射高光谱成像技术结合SLLE-LSSVM的定性分析方法能够同时识别马铃薯内外部缺陷的多项指标,为马铃薯内外部缺陷的快速在线无损检测提供了技术参考。 相似文献
8.
9.
10.
三七粉是三七的主要消费和商品形式,市场上存在以次充好、甚至是掺假的现象,由于是粉状物料,难以用肉眼判别,为了实现对不同质量等级的三七粉进行无损鉴别。将30头、40头、60头和80头的三七主根研磨成粉,制备样本。采用可见近红外高光谱成像系统(400.68~1 001.61 nm)采集4种不同头数三七粉,共计384个样品的高光谱图像,提取高光谱图像感兴趣区域(ROI)的平均光谱值作为样本原始光谱。将384个三七粉样本按2∶1的比例划分训练集和测试集。采用卷积平滑(SG)、多元散射校正(MSC)和标准正态变量变换(SNV)3种预处理方法对三七粉样本光谱信息进行预处理并建立支持向量机(SVM)分类模型,通过比较基于3种预处理方法的SVM模型测试集分类准确率,确定SNV为最优预处理方法。采用迭代保留信息变量(IRIV)、变量组合集群分析(VCPA)和变量组合集群分析混合迭代保留信息变量(VCPA-IRIV)3种特征选择方法提取SNV预处理后光谱的特征波长并建立基于特征光谱和原始光谱的SVM分类模型,通过比较基于3种特征选择方法得到的特征波长建立的SVM模型测试集分类准确率,发现将VCPA与IRIV相结合的VCPA-IRIV为最优特征选择方法。VCPA-IRIV提取了18个特征波长代替全光谱数据参与建模,该算法在降低模型复杂度的同时保持了模型的分类精度。为了提高模型的分类精度,采用引力搜索算法(GSA)对SVM模型中惩罚因子c和核参数g进行寻优,并与网格搜索(GS)的结果进行比较,结果表明,VCPA-IRIV-GSA-SVM模型分类效果最好,测试集分类准确率达到100%。可见,利用可见近红外高光谱成像对三七粉进行质量等级无损鉴别是可行的,为市场上三七粉的质量等级鉴别提供了参考。 相似文献
11.
基于支持向量机(SVM)特征加权/选择的光谱匹配算法 总被引:2,自引:1,他引:1
高光谱数据波段多、冗余大,为了提高数据的分析效率和精度,降维是一个关键步骤。文章在文献(参考了后面的文献[18])研究的基础上,引入了迭代SVM特征选择/加权算法,为多目标遗传优化获取最优参考光谱提供一个包含有效分类信息的低维空间。基于Indiana-AVIRIS高光谱数据的实验表明,特征加权/选择的引入使光谱匹配分类精度提高了13%(相对于无特征选择的情况而言)。文章还根据光谱样本距SVM分类面的远近,定义和计算了局部权重,不仅细致刻画了同类光谱样本在局部特征空间中的分布,还使光谱相似度的计算更加灵活化,精度提高幅度达到了17%(相对于无特征选择的情况而言)。文章研究方法的提出推进了SVM在光谱数据分析中的应用深度和广度。 相似文献
12.
近红外光谱法结合支持向量机测定天然牛黄粉中人工牛黄的掺入量 总被引:3,自引:1,他引:3
提出了应用近红外漫反射光谱技术结合支持向量机测定天然牛黄粉中人工牛黄的含量的方法。以傅里叶变换近红外光谱仪(4 000 ~10 000 cm-1)为试验仪器,以含有不等量人工牛黄的天然牛黄粉(天然牛黄的质量分数范围为 0%~100%)作为校正样品,对光谱数据进行平滑、求导和小波压缩,结合支持向量机,建立了测定天然牛黄粉中人工牛黄含量的模型。试验结果为: 预测相对误差的平方和可达 0.001 35。研究表明:近红外漫反射光谱法结合支持向量机可以测定天然牛黄粉中人工牛黄的掺入量,结果可靠, 可用于天然牛黄粉的质量控制。 相似文献
13.
高光谱图像具有数百个连续、狭窄的光谱带,光谱范围跨越可见光到红外光,可提供地物的精细光谱属性,对于地物材质和属性的识别分类具有重要应用价值.针对感兴趣目标选择有限的光谱波段进行传输和处理,对于提升高光谱数据处理时效性、以及设计面向特定应用的实用化光谱仪都具有重要意义.而如何结合目标特征选择最优波段成为在提升处理效率的同... 相似文献
14.
This work proposes a long range ultrasonic transducers technique in conjunction with an active incremental Support Vector Machine (SVM) classification approach that is used for real-time pipeline defects prediction and condition monitoring. Oil and gas pipeline defects are detected using various techniques. One of the most prevalent techniques is the use of “smart pigs” to travel along the pipeline and detect defects using various types of sensors such as magnetic sensors and eddy-current sensors. A critical short coming of “smart pigs” is the inability to monitor continuously and predict the onset of defects. The emergence of permanently installed long range ultrasonics transducers systems enable continuous monitoring to be achieved. The needs for and the challenges of the proposed technique are presented. The experimental results show that the proposed technique achieves comparable classification accuracy as when batch training is used, while the computational time is decreased, using 56 feature data points acquired from a lab-scale pipeline defect generating experimental rig. 相似文献
15.
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously. 相似文献
16.
In this paper, we propose a novel classification framework using single feature kernel matrix. Different from the traditional kernel matrices which make use of the whole features of samples to build the kernel matrix, this research uses features of the same dimension of any two samples to build a sub-kernel matrix and sums up all the sub-kernel matrices to get the single feature kernel matrix. We also use single feature kernel matrix to build a new SVM classifier, and adapt SMO (Sequential Minimal Optimization) algorithm to solve the problem of SVM classifier. The results of the experiments on several artificial datasets and some challenging public cancer datasets display the classification performance of the algorithm. The comparisons between our algorithm and L2-norm SVM on the cancer datasets demonstrate that the accuracy of our algorithm is higher, and the number of support vectors selected is fewer, indicating that our proposed framework is a more practical approach. 相似文献
17.
支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究 总被引:18,自引:6,他引:18
支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大黄样品真伪识别模型。对学习集中33个样品模型识别准确率为100%;对70个预测样品的识别准确率为96.77%, 为中药大黄的快速识别提供了参考。研究结果表明了SVM近红外光谱法建立生物样品识别模型的可行性。通过旨在介绍SVM学习方法的基本思想,以引起化学计量学工作者的进一步关注。 相似文献