首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proofs of strong NP-hardness of single machine and two-machine flowshop scheduling problems with learning or aging effect given in Rudek (Computers & Industrial Engineering 61:20–31, 2011; Annals of Operations Research 196(1):491–516, 2012a; International Journal of Advanced Manufacturing Technology 59:299–309, 2012b; Applied Mathematics and Computations 218:6498–6510, 2012c; Applied Mathematical Modelling 37:1523–1536, 2013) contain a common mistake that make them incomplete. We reveal the mistake and provide necessary corrections for the problems in Rudek (Computers & Industrial Engineering 61:20–31, 2011; Annals of Operations Research 196(1):491–516, 2012a; Applied Mathematical Modelling 37:1523–1536, 2013). NP-hardness of problems in Rudek (International Journal of Advanced Manufacturing Technology 59:299–309, 2012b; Applied Mathematics and Computations 218:6498–6510, 2012c) remains unknown because of another mistake which we are unable to correct.  相似文献   

2.
The notions of upper and lower exhausters represent generalizations of the notions of exhaustive families of upper convex and lower concave approximations (u.c.a., l.c.a.). The notions of u.c.a.’s and l.c.a.’s were introduced by Pshenichnyi (Convex Analysis and Extremal Problems, Series in Nonlinear Analysis and its Applications, 1980), while the notions of exhaustive families of u.c.a.’s and l.c.a.’s were described by Demyanov and Rubinov in Nonsmooth Problems of Optimization Theory and Control, Leningrad University Press, Leningrad, 1982. These notions allow one to solve the problem of optimization of an arbitrary function by means of Convex Analysis thus essentially extending the area of application of Convex Analysis. In terms of exhausters it is possible to describe extremality conditions, and it turns out that conditions for a minimum are expressed via an upper exhauster while conditions for a maximum are formulated in terms of a lower exhauster (Abbasov and Demyanov (2010), Demyanov and Roshchina (Appl Comput Math 4(2): 114–124, 2005), Demyanov and Roshchina (2007), Demyanov and Roshchina (Optimization 55(5–6): 525–540, 2006)). This is why an upper exhauster is called a proper exhauster for minimization problems while a lower exhauster is called a proper one for maximization problems. The results obtained provide a simple geometric interpretation and allow one to construct steepest descent and ascent directions. Until recently, the problem of expressing extremality conditions in terms of adjoint exhausters remained open. Demyanov and Roshchina (Appl Comput Math 4(2): 114–124, 2005), Demyanov and Roshchina (Optimization 55(5–6): 525–540, 2006) was the first to derive such conditions. However, using the conditions obtained (unlike the conditions expressed in terms of proper exhausters) it was not possible to find directions of descent and ascent. In Abbasov (2011) new extremality conditions in terms of adjoint exhausters were discovered. In the present paper, a different proof of these conditions is given and it is shown how to find steepest descent and ascent conditions in terms of adjoint exhausters. The results obtained open the way to constructing numerical methods based on the usage of adjoint exhausters thus avoiding the necessity of converting the adjoint exhauster into a proper one.  相似文献   

3.
Japanese Lesson Study is a model for teacher professional learning that has recently attracted world attention particularly within the mathematics education community. It is a highly structured process of teacher collaboration, observation, reflection and practice. The world focus has been mainly due to the work of American researchers such as Stigler and Hiebert (Am Educ Winter:1–10, 1998; The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. Free Press, New York 1999), Lewis and Tsuchida (Am Educ Winter:14–17; 50–52, 1998) and Fernandez [J Teach Educ 53(5):395–405, 2002]. These researchers have documented Lesson Study from the perspective of their social, cultural and educational contexts. In order to develop a deeper understanding of Lesson Study in a post-modern global world, there is a need to seek views beyond those presented from an American perspective. This paper will provide further additional perspectives from an Australian state view and a Malaysian state district view and a university view. The aim is to develop an understanding of how the different contexts have influenced the structure and implementation of the Japanese Lesson Study model.  相似文献   

4.
We provide a new semilocal convergence analysis of the Gauss–Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243–252, 1966; Chen and Nashed, Numer. Math. 66:235–257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1–10, 1979; Guo, J. Comput. Math. 25:231–242, 2007; Häußler, Numer. Math. 48:119–125, 1986; Hu et al., J. Comput. Appl. Math. 219:110–122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982).  相似文献   

5.
Three arguments for the conclusion that objects cannot endure in B-time even if they remain intrinsically unchanged are examined: Carter and Hestevold’s enduring-objects-as-universals argument (American Philosophical Quarterly 31(4):269–283, 1994) and Barker and Dowe’s paradox 1 and paradox 2 (Analysis 63(2):106–114, 2003, Analysis 65(1):69–74, 2005). All three are shown to fail.  相似文献   

6.
An abstract chordal metric is defined on linear control systems described by their transfer functions. Analogous to a previous result due to Partington (Linear Operators and Linear Systems. An Analytical Approach to Control Theory. London Mathematical Society Student Texts, vol. 60, Cambridge University Press, Cambridge, 2004) for $H^\infty $ , it is shown that strong stabilizability is a robust property in this metric.  相似文献   

7.
Burgers?? equations have been introduced to study different models of fluids (Bateman, 1915, Burgers, 1939, Hopf, 1950, Cole, 1951, Lighthill andWhitham, 1955, etc.). The difference-differential analogues of these equations have been proposed for Schumpeterian models of economic development (Iwai, 1984, Polterovich and Henkin, 1988, Belenky, 1990, Henkin and Polterovich, 1999, Tashlitskaya and Shananin, 2000, etc.). This paper gives a short survey of the results and conjectures on Burgers type equations, motivated both by fluid mechanics and by Schumpeterian dynamics. Proofs of some new results are given. This paper is an extension and an improvement of (Henkin, 2007, 2011).  相似文献   

8.
We investigate systems of self-propelled particles with alignment interaction. Compared to previous work (Degond and Motsch, Math. Models Methods Appl. Sci. 18:1193–1215, 2008a; Frouvelle, Math. Models Methods Appl. Sci., 2012), the force acting on the particles is not normalized, and this modification gives rise to phase transitions from disordered states at low density to aligned states at high densities. This model is the space-inhomogeneous extension of (Frouvelle and Liu, Dynamics in a kinetic model of oriented particles with phase transition, 2012), in which the existence and stability of the equilibrium states were investigated. When the density is lower than a threshold value, the dynamics is described by a nonlinear diffusion equation. By contrast, when the density is larger than this threshold value, the dynamics is described by a similar hydrodynamic model for self-alignment interactions as derived in (Degond and Motsch, Math. Models Methods Appl. Sci. 18:1193–1215, 2008a; Frouvelle, Math. Models Methods Appl. Sci., 2012). However, the modified normalization of the force gives rise to different convection speeds, and the resulting model may lose its hyperbolicity in some regions of the state space.  相似文献   

9.
In a projective plane $\mathit{PG}(2,\mathbb{K})$ defined over an algebraically closed field $\mathbb{K}$ of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614–1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672–688, 2008), comprises 3-nets realizing dihedral groups. We prove that there is no further infinite family. Urzúa’s 3-nets (Adv. Geom. 10:287–310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples. If p is larger than the order of the group, the above classification holds in characteristic p>0 apart from three possible exceptions $\rm{Alt}_{4}$ , $\rm{Sym}_{4}$ , and $\rm{Alt}_{5}$ . Motivation for the study of finite 3-nets in the complex plane comes from the study of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky in Compos. Math. 143:1069–1088, 2007; Miguel and Buzunáriz in Graphs Comb. 25:469–488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672–688, 2008; Yuzvinsky in Compos. Math. 140:1614–1624, 2004; Yuzvinsky in Proc. Am. Math. Soc. 137:1641–1648, 2009).  相似文献   

10.
The problem presented below is a singular-limit problem of the extension of the Cahn-Hilliard model obtained via introducing the asymmetry of the surface tension tensor under one of the truncations (approximations) of the inner energy [2, 58, 10, 12, 13].  相似文献   

11.
12.
In Zhao et al. (Electron J Combin 19: \({\sharp}\) P19, 2012), we determined the minimum number of vertices of one-realizations of a given finite set S, and constructed the corresponding mixed hypergraphs. In this paper, by finding some of their spanning sub-hypergraphs, we determine the minimum number of \({\mathcal{D}}\) -deges (resp. \({\mathcal{C}}\) -edges) of one-realizations of S. As a result, we partially solve an open problem proposed by Tuza and Voloshin (Bolyai Society Mathematical Studies, vol. 17, pp. 235–255. Springer, Berlin, 2008).  相似文献   

13.
We establish a new theorem of existence (and uniqueness) of solutions to the Navier-Stokes initial boundary value problem in exterior domains. No requirement is made on the convergence at infinity of the kinetic field and of the pressure field. These solutions are called non-decaying solutions. The first results on this topic dates back about 40 years ago see the references (Galdi and Rionero in Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980; Knightly in SIAM J. Math. Anal. 3:506–511, 1972). In the articles Galdi and Rionero (Ann. Mat. Pures Appl. 108:361–366, 1976, Arch. Ration. Mech. Anal. 62:295–301, 1976, Arch. Ration. Mech. Anal. 69:37–52, 1979, Pac. J. Math. 104:77–83, 1980) it was introduced the so called weight function method to study the uniqueness of solutions. More recently, the problem has been considered again by several authors (see Galdi et al. in J. Math. Fluid Mech. 14:633–652, 2012, Quad. Mat. 4:27–68, 1999, Nonlinear Anal. 47:4151–4156, 2001; Kato in Arch. Ration. Mech. Anal. 169:159–175, 2003; Kukavica and Vicol in J. Dyn. Differ. Equ. 20:719–732, 2008; Maremonti in Mat. Ves. 61:81–91, 2009, Appl. Anal. 90:125–139, 2011).  相似文献   

14.
Guershon Harel 《ZDM》2013,45(3):483-489
This special issue discusses various pedagogical innovations and myriad of significant findings. This commentary is not a synthesis of these contributions, but a summary of my own reflections on selected aspects of the nine papers comprising the special issue. Four themes subsume these reflections: (1) Gestural Communication (Alibali, Nathan, Church, Wolfgram, Kim and Knuth 2013); (2) Development of Ways of Thinking (Jahnke and Wambach 2013; Lehrer, Kobiela and Weinberg 2013; Mariotti 2013; Roberts and A. Stylianides 2013; Shilling-Traina and G. Stylianides 2013; Tabach, Hershkowitz and Dreyfus 2013); (3) Learning Mathematics through Representation (Saxe, Diakow and Gearhart 2013); and (4) Challenges in Dialogic Teaching (Ruthven and Hofmann 2013).  相似文献   

15.
Based on the very recent work by Dang and Gao (Invers Probl 27:1–9, 2011) and Wang and Xu (J Inequal Appl, doi:10.1155/2010/102085, 2010), and inspired by Yao (Appl Math Comput 186:1551–1558, 2007), Noor (J Math Anal Appl 251:217–229, 2000), and Xu (Invers Probl 22:2021–2034, 2006), we suggest a three-step KM-CQ-like method for solving the split common fixed-point problems in Hilbert spaces. Our results improve and develop previously discussed feasibility problem and related algorithms.  相似文献   

16.
The paper presents a non-conventional control engineering strategy proposed by experimental physicists, employed for controlling Dynamical Systems and basically designed for the control of nonlinear systems (Liqun and Yan Zhu in Appl. Math. Mech. 19:67–73, 1998; Liqun and Yan Zhu in Phys. Lett. A 262:350–354, 1999). After a brief presentation of the strategy—called state space exact linearization method, this is applied to design a nonlinear feedback control law as well as a modified version of this law, to control the Kaldor (Chang and Smyth in Rev. Econ. Stud. 38:37–44, 1971) and the Bonhoeffer-Van Der Pohl (Grassman in Environment, Economics and their Mathematical Models, 1994) nonlinear systems used in macro-economic business cycles.  相似文献   

17.
We study a class of Steffensen-type algorithm for solving nonsmooth variational inclusions in Banach spaces. We provide a local convergence analysis under ω-conditioned divided difference, and the Aubin continuity property. This work on the one hand extends the results on local convergence of Steffensen’s method related to the resolution of nonlinear equations (see Amat and Busquier in Comput. Math. Appl. 49:13–22, 2005; J. Math. Anal. Appl. 324:1084–1092, 2006; Argyros in Southwest J. Pure Appl. Math. 1:23–29, 1997; Nonlinear Anal. 62:179–194, 2005; J. Math. Anal. Appl. 322:146–157, 2006; Rev. Colomb. Math. 40:65–73, 2006; Computational Theory of Iterative Methods, 2007). On the other hand our approach improves the ratio of convergence and enlarges the convergence ball under weaker hypotheses than one given in Hilout (Commun. Appl. Nonlinear Anal. 14:27–34, 2007).  相似文献   

18.
Polynomials and exponential polynomials play a fundamental role in the theory of spectral analysis and spectral synthesis on commutative groups. Recently several new results have been published in this field [24,6]. Spectral analysis and spectral synthesis has been studied on some types of commutative hypergroups, as well. However, a satisfactory definition of exponential monomials on general commutative hypergroups has not been available so far. In [5,7,8] and [9], the authors use a special concept on polynomial and Sturm–Liouville-hypergroups. Here we give a general definition which covers the known special cases.  相似文献   

19.
In this note we study the Navier–Stokes initial boundary value problem in exterior domains. We assume that the initial data has just finite Dirichlet norm. We call the solution \(D\) -solution. It is well known that the analogous steady problem is solved in Galdi (An Introduction to the Mathematical Theory of the Navier–Stokes Equations II. Springer, Berlin, 1994), as well as the existence of time periodic solutions in Maremonti et al. (J Math Sci 93(5):719–746, 1999, Zap. Nauchn. Semin. POMI 233:142–182, 1996). So it is natural to inquire about the case of the nonstationary problem.  相似文献   

20.
We look for algebraic certificates of positivity for functions which are not necessarily polynomial functions. Similar questions were examined earlier by Lasserre and Putinar [Positivity and optimization for semi-algebraic functions (to appear), Proposition 1] and by Putinar [A Striktpositivestellensatz for measurable functions (corrected version) (to appear), Theorem 2.1]. We explain how these results can be understood as results on hidden positivity: The required positivity of the functions implies their positivity when considered as polynomials on the real variety of the respective algebra of functions. This variety is however not directly visible in general. We show how algebras and quadratic modules with this hidden positivity property can be constructed. We can then use known results, for example Jacobi’s representation theorem (Jacobi in Math Z 237:259–273, 2001, Theorem 4), or the Krivine-Stengle Positivstellensatz (Marshall in Positive polynomials and sums of squares. Mathematical Surveys and Monographs 146, 2008, page 25), to obtain certificates of positivity relative to a quadratic module of an algebra of real-valued functions. Our results go beyond the results of Lasserre and Putinar, for example when dealing with non-continuous functions. The conditions are also easier to check. We explain the application of our result to various sorts of real finitely generated algebras of semialgebraic functions. The emphasis is on the case where the quadratic module is also finitely generated. Our results also have application to optimization of real-valued functions, using the semidefinite programming relaxation methods pioneered by Lasserre [SIAM J Optim 11(3): 796–817, 2001; Lasserre in Moments, positive polynomials and their applications. Imperial College Press, London, 2009; Lasserre and Putinar in Positivity and optimization for semi-algebraic functions (to appear); Marshall in Positive polynomials and sums of squares. Mathematical Surveys and Monographs 146, 2008, page 25].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号