首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
‘Procedural’ fluency in mathematics is often judged solely on numerical representations. ‘Mathematical’ fluency incorporates explaining and justifying as well as producing correct numerical solutions. To observe mathematical fluency, representations additional to a student’s numerical work should be considered. This paper presents analysis of students’ oral responses. Findings suggested oral responses are important vantage points from which to view fluency – particularly characteristics harder to notice through numerical work such as reasoning. Students’ oral responses were particularly important when students’ written (language) responses were absent/inconsistent. Findings also revealed the importance of everyday language alongside technical terms for observing reasoning as a fluency characteristic. Students used high modality verbs and language features, such as connectives, to explain concepts and justify their thinking. The results of this study purport that to gain a fuller picture of students’ fluency, specifically their explanations or reasoning, students’ oral responses should be analyzed, not simply numerical work.  相似文献   

2.
Findings discussed in this paper are from a larger research project exploring mathematical fluency characteristics, and teacher noticing and interpreting of mathematical fluency. The current study involved students from seven primary classes (Kindergarten – Grade 6, N = 63 students) and investigated students’ written work samples and oral discussions as they collaborated in small groups to solve mathematical tasks. Students displayed mathematical fluency both orally and in written/drawn form. Certain aspects of mathematical fluency were easier to identify orally (adaptive reasoning) particularly for younger students and when students did not provide any written reasoning. Analyzing the oral responses was often needed to identify mathematical fluency beyond knowledge of a correct procedure (strategic competence). Findings suggested that the various representations students used were valuable for observing mathematical fluency. These results suggest that oral assessments as a means to understand and interpret students’ mathematical fluency are necessary.  相似文献   

3.
This study explores how students learn to create, discuss, and reason with representations to solve problems. A summer school algebra class for seventh and eighth graders provided opportunities for students to create and use representations as problem-solving tools. This case study follows the learning trajectories of three boys. Two of the three boys had been low-achievers in their previous math classes, and one was a high achiever. Analysis of all three boys’ written work reveals how their representations became more sophisticated over time. Their small group interactions while problem-solving also show changes in how they communicated and reasoned with representations. For these boys, representation functioned as a learning practice. Through constructing and reasoning with representations, the boys were able to engage in generalizing and justifying claims, discuss quadratic growth, and collaborate and persist in problem-solving. Negotiating different student-constructed representations of a problem also gave them opportunities to act with agency, as they made choices and judgments about the validity of the different perspectives. These findings have implications for the importance of giving all students access to mathematics through representations, with representational thinking serving as a central disciplinary practice and as a learning practice that supports further mathematics learning.  相似文献   

4.
Mathematics education for multilingual classrooms calls for instructional approaches that build upon students’ multilingual resources. However, so far, students’ multilingual resources and the interplay of their components have only partly been disentangled and rarely compared between different multilingual contexts. This article suggests a conceptualization of multilingual repertoires-in-use as characterized by (a) what students use of certain languages, registers, and representations as sources for meaning-making in mathematics classrooms and (b) their processes of how they connect certain languages, registers, and representations. This qualitative learning-process study compares students’ multilingual repertoires-in-use in three contexts: Spanish-speaking foreign language learners of German in Colombia, Turkish- and German-speaking students born in Germany, and Arabic-speaking German language beginners recently immigrated to Germany. The analysis reveals the biggest differences not only in what the students use, but how they connect languages, registers, and representations. Some of these differences can partly be traced back to different classroom cultural practices. These findings suggest extending the conceptual framework for multilingual repertoires-in-use and including it in a social theoretical perspective. Thus, these findings have important practical consequences for multilingual mathematics classrooms: The instructional approach of relating languages, registers, and representations needs to be applied more flexibly, taking into account students’ different starting points. When doing so, students’ connection processes should be supported and explicated more systematically in order to fully exploit the students’ repertoires.  相似文献   

5.
The study reported in this article examined the ways in which new mathematics learning influences students’ prior ways of reasoning. We conceptualize this kind of influence as a form of transfer of learning called backward transfer. The focus of our study was on students’ covariational reasoning about linear functions before and after they participated in a multi-lesson instructional unit on quadratic functions. The subjects were 57 students from two authentic algebra classrooms at two local high schools. Qualitative analysis suggested that quadratic functions instruction did influence students’ covariational reasoning in terms of the number of quantities and the level of covariational reasoning they reasoned with. These results further the field’s understanding of backward transfer and could inform how to better support students’ abilities to engage in covariational reasoning.  相似文献   

6.
Edward A. Silver 《ZDM》1997,29(3):75-80
Although creativity is often viewed as being associated with the notions of “genius” or exceptional ability, it can be productive for mathematics educators to view creativity instead as an orientation or disposition toward mathematical activity that can be fostered broadly in the general school population. In this article, it is argued that inquiry-oriented mathematics instruction which includes problem-solving and problem-posing tasks and activities can assist students to develop more creative approaches to mathematics. Through the use of such tasks and activities, teachers can increase their students’ capacity with respect to the core dimensions of creativity, namely, fluency, flexibility, and novelty. Because the instructional techniques discussed in this article have been used successfully with students all over the world, there is little reason to believe that creativity-enriched mathematics instruction cannot be used with a broad range of students in order to increase their representational and strategic fluency and flexibility, and their appreciation for novel problems, solution methods, or solutions.  相似文献   

7.
We investigated covariational reasoning among 487 secondary mathematics teachers in the United States and South Korea. We presented an animation showing values of two varying magnitudes (v and u) on axes in a Cartesian plane along with a request that they sketch a graph of the value of u in relation to the value of v. We classified teacherssketches on two independent criteria: (1) where they placed their initial point, and (2) their graph’s overall shape irrespective of initial point. There are distinct differences on both criteria between U.S. and South Korean teachers, suggesting that covariational reasoning is more prominent among South Korean secondary teachers than among U.S. secondary teachers. The results also suggest strongly that forming a multiplicative object that unites quantitiesvalues is necessary to express covariation graphically.  相似文献   

8.
Cross-sectional and longitudinal data from students as they advance through the middle school years (grades 6-8) reveal insights into the development of students' pattern generalization abilities. As expected, students show a preference for lower-level tasks such as reading the data, over more distant predictions and generation of abstractions. Performance data also indicate a verbal advantage that shows greater success when working with words than graphs, a replication of earlier findings comparing words to symbolic equations. Surprisingly, students show a marked advantage with patterns presented in a continuous format (line graphs and verbal rules) as compared to those presented as collections of discrete instances (point-wise graphs and lists of exemplars). Student pattern-generalization performance also was higher when words and graphs were combined. Analyses of student performance patterns and strategy use contribute to an emerging developmental model of representational fluency. The model contributes to research on the development of representational fluency and can inform instructional practices and curriculum design in the area of algebraic development. Results also underscore the impact that perceptual aspects of representations have on students' reasoning, as suggested by an Embodied Cognition view.  相似文献   

9.
This research addresses the issue of how to support students' representational fluency—the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper‐and‐pencil classroom environment is targeted as a rich and pressing context to study this issue. We report results of a collaborative teaching experiment in which we designed for and tested a functions approach to solving equations with ninth‐grade algebra students, and link to results of semi‐structured interviews with students before and after the experiment. Results of analyzing the five‐week experiment include instructional supports for students' representational fluency in solving linear equations: (a) sequencing the use of graphs, tables, and CAS feedback prior to formal symbolic transpositions, (b) connecting solutions to equations across representations, and (c) encouraging understanding of equations as equivalence relations that are sometimes, always, or never true. While some students' change in sophistication of representational fluency helps substantiate the productive nature of these supports, other students' persistent struggles raise questions of how to address the diverse needs of learners in complex learning environments involving multiple tool‐based representations.  相似文献   

10.
This study is an investigation of students’ reasoning about integer comparisons—a topic that is often counterintuitive for students because negative numbers of smaller absolute value are considered greater (e.g., −5 >  6). We posed integer-comparison tasks to 40 students each in Grades 2, 4, and 7, as well as to 11th graders on a successful mathematics track. We coded for correctness and for students’ justifications, which we categorized in terms of 3 ways of reasoning: magnitude-based, order-based, and developmental/other. The 7th graders used order-based reasoning more often than did the younger students, and it more often led to correct answers; however, the college-track 11th graders, who responded correctly to almost every problem, used a more balanced distribution of order- and magnitude-based reasoning. We present a framework for students’ ways of reasoning about integer comparisons, report performance trends, rank integer-comparison tasks by relative difficulty, and discuss implications for integer instruction.  相似文献   

11.
Ruth Stavy  Reuven Babai 《ZDM》2010,42(6):621-633
It is well known that many students encounter difficulties when solving problems in mathematics. Research indicates that some of these difficulties may stem from intuitive interference with formal/logical reasoning. Our research aims at deepening the understanding of these difficulties and their underlying reasoning mechanisms to help students overcome them. For this purpose we carried out behavioral, brain imaging and intervention studies focusing on a previously demonstrated obstacle in mathematics education. The literature reports that many students believe that shapes with a larger area must have a larger perimeter. We measured the accuracy of responses, reaction time, and neural correlates (by fMRI) while participants compared the perimeters of geometrical shapes in two conditions: (1) congruent, in which correct response was in line with intuitive reasoning (larger arealarger perimeter) and (2) incongruent, in which the correct answer was counterintuitive. In the incongruent condition, accuracy dropped and reaction time for correct responses was longer than in the congruent condition. The congruent condition activated bilateral parietal brain areas, known to be involved in the comparison of quantities, while correctly answering the incongruent condition activated bilateral prefrontal areas known for their executive control over other brain regions. The intervention, during which students’ attention was drawn to the relevant variable, increased accuracy in the incongruent condition, while reaction times increased in both congruent and incongruent conditions. The findings of the three studies point to the importance of control mechanisms in overcoming intuitive interference in mathematics. Overall, it appears that adding a cognitive neuroscience perspective to mathematics education research can contribute to a better understanding of students’ difficulties and reasoning processes. Such information is important for educational research and practice.  相似文献   

12.
In this article, we will describe the results of a study of 6th grade students learning about the mathematics of change. The students in this study worked with software environments for the computer and the graphing calculator that included a simulation of a moving elevator, linked to a graph of its velocity vs. time. We will describe how the students and their teacher negotiated the mathematical meanings of these representations, in interaction with the software and other representational tools available in the classroom. The class developed ways of selectively attending to specific features of stacks of centimeter cubes, hand-drawn graphs, and graphs (labeled velocity vs. time) on the computer screen. In addition, the class became adept at imagining the motions that corresponded to various velocity vs. time graphs. In this article, we describe this development as a process of learning to see mathematical representations of motion. The main question this article addresses is: How do students learn to see mathematical representations in ways that are consistent with the discipline of mathematics? This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Over the past 3 years, in our Early Algebra Thinking project, we have been studying Years 3 to 5 students’ ability to generalise in a variety of situations, namely, compensation principles in computation, the balance principle in equivalence and equations, change and inverse change rules with function machines, and pattern rules with growing patterns. In these studies, we have attempted to involve a variety of representations and to build students’ abilities to switch between them (in line with the theories of Dreyfus in Advanced mathematical thinking. Kluwer, Dordtrecht, pp. 25–41, 1991, and Duval in Proceedings of the 21st conference of the North American chapter of the international group for the psychology of mathematics education, vol. 1, pp. 3–26, 1999). The studies have shown the negative effect of closure on generalisation in symbolic representations, the predominance of single variance generalisation over covariant generalisation in tabular representations, and the reduced ability to readily identify commonalities and relationships in enactive and iconic representations. This presentation will use a variety of studies to explore the interrelation between verbal and visual comprehension of context and generalisation. The studies showed in a variety of contexts the importance of understanding and communicating aspects of representational forms which allowed commonalities to be seen across or between representations.  相似文献   

14.
15.
We study representations of polynomials over a field K from the point of view of their expressive power. Three important examples for the paper are polynomials arising as permanents of bounded tree-width matrices, polynomials given via arithmetic formulas, and families of so called CNF polynomials. The latter arise in a canonical way from families of Boolean formulas in conjunctive normal form. To each such CNF formula there is a canonically attached incidence graph. Of particular interest to us are CNF polynomials arising from formulas with an incidence graph of bounded tree- or clique-width.We show that the class of polynomials arising from families of polynomial size CNF formulas of bounded tree-width is the same as those represented by polynomial size arithmetic formulas, or permanents of bounded tree-width matrices of polynomial size. Then, applying arguments from communication complexity we show that general permanent polynomials cannot be expressed by CNF polynomials of bounded tree-width. We give a similar result in the case where the clique-width of the incidence graph is bounded, but for this we need to rely on the widely believed complexity theoretic assumption #P?FP/poly.  相似文献   

16.
This paper reports a study of the efficacy of Learning Mathematics through Representations (LMR), an innovative curriculum unit designed to support upper elementary students’ understandings of integers and fractions. The unit supports an integrated treatment of integers and fractions through (a) the use of the number line as a cross-domain representational context, and (b) the building of mathematical definitions in classroom communities that become resources to support student argumentation, generalization, and problem solving. In the efficacy study, fourth and fifth grade teachers employing the same district curriculum (Everyday Mathematics) were matched on background indicators and then assigned to either the LMR experimental classrooms (n = 11) or the comparison group (n = 8 with 10 classrooms). During the fall semester, LMR teachers implemented the LMR unit on 19 days and district curriculum on other days of mathematics instruction. HLM analyses documented greater achievement for LMR students than Comparison students on both the end-of-unit and the end-of year assessments of integers and fractions knowledge; the growth rates of LMR students were similar regardless of entering ability level, and gains for LMR students occurred on item types that included number line representations and those that did not. The findings point to the efficacy of the LMR sequence in supporting teaching and learning in the domains of integers and fractions.  相似文献   

17.
Using qualitative data collection and analyses techniques, we examined mathematical representations used by sixteen (N = 16) teachers while teaching the concepts of converting among fractions, decimals, and percents. We also studied representational choices by their students (N = 581).In addition to using geometric figures and manipulatives, teachers used natural language such as the words nanny and house to characterize mathematical procedures or algorithms. Some teachers used the words or phrases bigger, smaller, doubling, and building-up in the context of equivalent fractions. There was widespread use of idiosyncratic representations by teachers and students, specifically equations with missing equals signs and not multiply/dividing by one to find equivalent fractions. No evidence though of a relationship between representational forms and degree of correctness of solutions was found on student work. However, when students exhibited misconceptions, those misconceptions were linked to teachers’ use of idiosyncratic representations.  相似文献   

18.
19.
This paper examines the idea that particular representations differentially support and enhance different cognitive processes, in particular different types of reasoning. Five case studies were conducted consisting of detailed observations of pairs of middle-school students interacting with a computer-based learning environment. The software environment, called NumberSpeed, deals with kinematics concepts by having students construct various motion scenarios by adjusting numerical motion parameters: position, velocity and acceleration. NumberSpeed provides feedback about the student-specified motion using two representations: the motion representation and the number-lists representation. Two distinct types of reasoning were recognized in students’ learning while interacting with NumberSpeed: (1) model-based reasoning and (2) constraint-based reasoning. These two types of reasoning are characterized in detail and their roles in problem-solving are analyzed. A cross-analysis between the types of reasoning and the use of particular NumberSpeed representations reveals a correlation between type of reasoning and representational choice. These findings are explained by analyzing the representations’ characteristics and the ways they may differentially support and enhance particular types of reasoning.  相似文献   

20.
The present qualitative case study on mathematics majors’ visualization of eigenvector–eigenvalue concepts in a dynamic environment highlights the significance of student-generated representations in a theoretical framework drawn from Sierpinska's (2000) modes of thinking in linear algebra. Such an approach seemed to provide the research participants with mathematical freedom, which resulted in an awareness of the multiple ways that eigenvalue–eigenvector relationships could be visualized in a manner that widened students’ repertoire of meta-representational competences (diSessa, 2004) in coordination with their preferred modes of visualization. Students’ expression of visual fluency in the course of making sense of the eigenvalue problem Au = λu associated with a variety of matrices occurred in different, yet not necessarily hierarchical modes of visualizations that differed from matrix to matrix: (i) synthetic/analytic mode manifested in the process of detecting eigenvectors when the sought eigenvector and the matrix-applied product vector were aligned in the same/opposite directions; (ii) analytic arithmetic mode manifested in the case of singular matrices (in the determination of the zero eigenvalue) and invertible matrices with nonreal eigenvalues; (iii) analytic structural mode, though rarely occurred, manifested in making sense of the trajectory (circle, ellipse, line segment) of the matrix-applied product vector and relating trajectory behavior to matrix type. While the connection between the thinking modes (Sierpinska, 2000) and the concreteness–necessity–generalizability triad (Harel, 2000) was not sharp, math majors still frequently implemented the CNG principles, which proved facilitatory tools in the evolution of students’ thinking about the eigenvalue–eigenvector relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号