首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipase Cgamma1 (PLCgamma1) plays an important role in controlling cellular proliferation and differentiation. PLCgamma1 is overexpressed in some tumors, and its overexpression induces solid tumors in nude mice. However, the regulatory mechanisms underlying PLCgamma1-induced cell proliferation are not fully understood. Here we show that overexpression of PLCgamma1 highly phosphorylated glycogen synthase kinase-3beta (GSK-3beta) at serine-9 in 3Y1 fibroblasts. Inhibition of protein kinase C (PKC)s with GF109203X abrogated GSK-3beta phosphorylation by PLCgamma1. We also found that steady-state level of cyclin D1 protein, but not cyclin D1 mRNA, was highly elevated in response to serum stimulation in PLCgamma1-transfected cells as compared with vector-transfected cells. Since GSK-3beta is involved in cyclin D1 proteolysis in response to mitogenic stimulation, PLCgamma1-mediated GSK-3beta phosphorylation may function as a regulation of cyclin D1 accumulation in PLCgamma1-overexpressing cells.  相似文献   

2.
The structural dynamics of the cAMP-dependent protein kinase catalytic subunit were modeled using molecular dynamics computational methods. It was shown that the structure of this protein as well as its complexes with ATP and peptide ligand PKI(5-24) consisted of a large number of rapidly inter-converting conformations which could be grouped into subsets proceeding from their similarity. This cluster analysis revealed that conformations which correspond to the “opened” and “closed” structures of the protein were already present in the free enzyme, and most surprisingly co-existed in enzyme–ATP and enzyme–PKI(5-24) complexes as well as in the ternary complex, which included both of these ligands. The results also demonstrated that the most mobile structure segments of the protein were located in the regions of substrate binding sites and that their dynamics were most significantly affected by the binding of the ATP and peptide ligand.  相似文献   

3.
We report the activation of an enzyme complex by mechanical tension. Protein kinase A, a tetrameric enzyme that, in the cell, is allosterically controlled by cAMP, has been modified by the insertion of a "molecular spring" on the regulatory subunit. The spring is made of DNA, and its stiffness can be varied externally by hybridization to a complementary strand. This allows us to exert a controlled mechanical tension between the two points on the protein's surface where the spring is attached. We show that upon applying the tension, we can activate the enzyme with efficiency comparable to the activation by its natural regulatory molecule, cAMP.  相似文献   

4.
Phospholipase D (PLD) activity is known to be related to oxidant-induced cellular signaling and membrane disturbance. Previously, an induction of PLD activity in various cell lines by X-ray irradiation was observed. In this study, we examined the effect of UVC radiation on the PLD activity in Vero 76 cells. At a dose of 10 kJ/m2 of UVC irradiation, the PLD activity was stimulated approximately 10-fold over the basal activity. This UVC-induced PLD activity was found to be dependent on the presence of extracellular calcium and was inhibited by catalase as well as amifostine-an intracellular thiol antioxidant. Pretreatments with Ro32-0432-a selective inhibitor of protein kinase C (PKC)-and downregulation of PKC by preincubation of phorbol 12-myristate 13-acetate significantly inhibited the UVC-induced PLD activity. UVC-stimulated PLD activity was observed only in murine PLD2 (mPLD2)-transfected Vero 76 cells and not in human PLD1 (hPLD1)-transfected cells. Transient incorporation of PKC with mPLD2 and the phosphorylation of mPLD2 by a and b forms of PKC by UVC irradiation were observed. These results suggest that the UVC-stimulated PLD activity in Vero 76 cells is mediated through transient phosphorylation of PLD2 by the translocation of PKC to PLD2.  相似文献   

5.
The occurrence of Ca2+-, Ca2+-phospholipid-, Ca2+-calmodulin-, and cAMP-dependent phosphorylation has been shown with the aid of protein kinase activators and inhibitors and by electrophoresis and autoradiography. Specific substrates have been revealed and it has been demonstrated that the pathways of the realization of the action of cAMP-dependent and Ca2+-calmodulin-dependent protein kinases may intersect.A. S. Sadykov Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax 627071. Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax 442603. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 96–100, January–February, 1994.  相似文献   

6.
Riboflavin-binding protein (RBP, a carrier of riboflavin) plays an essential role in embryo development. Electrochemical studies of the riboflavin–RBP interactions have been so far limited to changes in polarographic and voltammetric responses of riboflavin because of lack of methods capable to detect electrochemical changes in the RBP responses. Here we used constant current chronopotentiometric stripping analysis (CPSA) with the hanging mercury drop electrode (HMDE) and square wave voltammetry (SWV) with carbon paste electrode (CPE) to investigate RBP. We found that CPSA of RBP produces electrocatalytic peak H, capable to discriminate between apoprotein and holoprotein forms of RBP. This peak is suitable for studies of RBP–riboflavin interaction at nanomolar concentrations. We observed no sign of a release of riboflavin from holoprotein adsorbed at the HMDE surface. SWV at CPE required higher concentrations of RBP and displayed almost identical oxidation peaks of apoprotein and holoprotein.  相似文献   

7.
An engineered version of the staphylococcal alpha-hemolysin protein pore, bearing a peptide inhibitor near the entrance to the beta barrel, interacts with the catalytic (C) subunit of cAMP-dependent protein kinase. By monitoring the ionic current through the pore, binding events are detected at the single-molecule level. The kinetic and thermodynamic constants governing the binding interaction and the synergistic effect of MgATP are comparable but not identical to the values in bulk solution. Further, the values are strongly dependent on the applied membrane potential. Additional exploration of these findings may lead to a better understanding of the properties of enzymes at the lipid/water interface. Despite the complications, we suggest that the engineered pore might be used as a sensor element to screen inhibitors that act at either the substrate or ATP binding sites of the C subunit.  相似文献   

8.
Characterization of the unfolding dynamics of a recombinant type IA regulatory subunit (RIalpha) of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (cAPK) was examined by CE with UV detection. Electrophoretic separation of RIalpha by CE in a buffer devoid of cAMP resulted in rapid dissociation of the complex from the original sample due to the high negative mobility of the ligand relative to receptor. This process enabled in-capillary generation of cAMP-stripped RIalpha, which was used to estimate the apparent dissociation constant (Kd) of 0.6 +/- 0.2 microM. A comparison of RIalpha dynamic unfolding processes with urea denaturation was performed by CE with (i.e., RIalpha-cAMP) and without (i.e., cAMP-stripped RIalpha) excess cAMP in the buffer during electromigration. The presence of cAMP in the buffer confirmed greater stabilization of the protein, as reflected by a higher standard free energy change (DeltaG(U) degrees) of 10.1 +/- 0.5 kcal x mol(+1) and greater cooperativity in unfolding (m) of -2.30 +/- 0.11 kcal x mol(-1) M(-1). CE offers a rapid, yet versatile platform for probing the thermodynamics of cAPK and other types of receptor-ligand complexes in free solution.  相似文献   

9.
To investigate the molecular details of the phosphoryl-transfer mechanism catalyzed by cAMP-dependent protein kinase, we performed quantum mechanical (QM) calculations on a cluster model of the active site and molecular dynamics (MD) simulations of a ternary complex of the protein with Mg(2)ATP and a 20-residue peptide substrate. Overall, our theoretical results confirm the participation of the conserved aspartic acid, Asp(166), as an acid/base catalyst in the reaction mechanism catalyzed by protein kinases. The MD simulation shows that the contact between the nucleophilic serine side chain and the carboxylate group of Asp(166) is short and dynamically stable, whereas the QM study indicates that an Asp(166)-assisted pathway is structurally and energetically feasible and is in agreement with previous experimental results.  相似文献   

10.
Oxidative stress has been implicated in mediation of vascular disorders. Earlier study showed that the exposure of vascular smooth muscle cells (VSMC) to pervanadate (hydrogen peroxide plus orthovanadate) resulted in the accumulation of [3H]phosphatidylbutanol. In this study, the effect of pervanadate on the activation of p38 mitogen-activated protein kinase (p38 MAPK) was studied in the VSMC. Pervanadate treatment activated p38 MAPK in a dose-and time-dependent manner. Interestingly, specific inhibition of p38 MAPK with SB203580 attenuated pervanadate-induced PLD activation. This correlates with the finding that expression of dominant negative mutants of MKK3/6 inhibited the PLD activation. SB203580 pretreatment also inhibited other cellular stressors (i.e. high osmolarity and UV light)-induced PLD activation. The possible correlationship of p38 MAPK activation with PKC was examined since PKC is reported to be involved in the pervanadate-induced PLD activation. Calphostin C, a PKC inhibitor, suppressed pervanadate-induced p38 MAPK and PLD activation in a dose-dependent manner. These results suggest that PKC-p38 MAPK may represent an upstream pathway of PLD in the signal transduction of cellular stress.  相似文献   

11.
Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to generate the lipid second messenger, phosphatidic acid. PLD is localized in most cellular organelles, where it is likely to play different roles in signal transduction. PLD1 is primarily localized in vesicular structures such as endosomes, lysosomes and autophagosomes. However, the factors defining its localization are less clear. In this study, we found that four hydrophobic residues present in the N-terminal HKD catalytic motif of PLD1, which is involved in intramolecular association, are responsible for vesicular localization. Site-directed mutagenesis of the residues dramatically disrupted vesicular localization of PLD1. Interestingly, the hydrophobic residues of PLD1 are also involved in the interruption of its nuclear localization. Mutation of the residues increased the association of PLD1 with importin-β, which is known to mediate nuclear importation, and induced the localization of PLD1 from vesicles into the nucleus. Taken together, these data suggest that the hydrophobic amino acids involved in the interdomain association of PLD1 are required for vesicular localization and disturbance of its nuclear localization.  相似文献   

12.
Extracellular ATP has been known to modulate various cellular responses including mitogenesis, secretion and morphogenic activity in neuronal cells. In the ATP-induced morphogenic activity, focal adhesion kinase(s) such as Fak have been suggested to play a critical role. Binding of ATP to its specific cell surface receptor in PC12 cells induces phospholipase D (PLD) activity. However, the role of PLD on ATP-induced Fak activation in PC12 cells remains unclear. In this study, we investigated the role of PLD on the ATP-induced Fak activation and paxillin phosphorylation using two established cell lines: wild type PLD2- and lipase-inactive mutant PLD2-inducible PC12 cells. Stimulation of cells with ATP caused PLD2 activation via classical protein kinase C activation. ATP also induced Fak activation, and paxillin phosphorylation, and were dramatically reduced by wild type PLD2 overexpression but not by lipase-inactive mutant PLD2 overexpression. When the PC12 cells were pretreated with propranolol, a specific inhibitor for phosphatidic acid phosphohydrolase resulting in the accumulation of PA, ATP-induced Fak activation and paxillin phosphorylation were also reduced. We found that inhibition of tyrosine phosphatases by pervanadate completely blocked PLD2-dependent Fak and paxillin dephosphorylation. Taken together, we suggest that PLD2 activity might play a negative role in ATP-induced Fak and paxillin phosphorylation possibly through tyrosine phosphatases.  相似文献   

13.
Hydration of the various residues of phospholipids was inferred from the shift in the wave number of their vibration bands, obtained from the amplitudes of their positive and negative peaks in the difference spectra between those of the hydrated and the dry phospholipid multibilayers. The effect of aligned phospholipid layers on the orientation of their hydrating water molecules was inferred from the dichroic ratio of the OH stretching band, measured by polarized attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) with a germanium prism, as a function of the water-to-lipid ratio in the surface film. The results indicate that about seven water molecules are oriented by one phosphatidyl serine molecule in the surface film. About 8 to 11 additional water molecules contribute to the hydration of the polar residues as revealed by the effect on the difference spectra. The hydration appears to be cooperative. A water molecule that initiates hydration of a site facilitates access of additional water molecules, until the hydration of the whole site composed of many different interacting polar residues is completed.  相似文献   

14.
1H NMR self-diffusion coefficient, spin-lattice relaxation time, spin-spin relaxation time, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the association behavior of a novel hydrophobically associating copolymer composed of acrylamide (AM) and a small amount of 2-phenoxyethyl acrylate (POEA), and its interaction with the anionic surfactant sodium dodecyl sulfate (SDS). Three sets of copolymers with approximately the same composition but with different hydrophobic POEA contents were investigated. The POEA contents for these copolymers were about 1.41, 1.03, and 0.56 mol% respectively, as validated by 1H NMR spectra. Self-diffusion coefficient measurements show that the aggregation process occurs in a relative narrow concentration range and the critical association concentrations (cacs), of these copolymers are within this narrow concentration range, which are in agreement with those measured by viscosity measurements (6 g L–1). Above this concentration, the hydrophobic POEA moieties are found to associate and possibly build a transitory three-dimensional network along the polyacrylamide (PAM) backbones, which induces a strong decrease in NMR parameters including self-diffusion coefficients and relaxation times. The surfactant SDS showed a significant interaction with the copolymer in the dilute solution. Addition of SDS resulted in the binding of SDS on copolymer POEA-PAM segments and reinforced the interchain transient network formation of copolymer at a concentration below its cac. In the SDS/POEA-PAM mixed systems, the hydrophobic methylene groups of the SDS molecules were preferentially located in the vicinity of the phenoxy groups of the POEA hydrophobes.  相似文献   

15.
An electrochemical investigation on the interaction of acid chrome blue K (ACBK) with protein on the mercury electrode with different electrochemical methods such as cyclic voltammetry and linear sweep voltammetry was reported in this paper. In pH 3.0 Britton-Robinson (B-R) buffer solution, ACBK has an irreversible voltammetric reductive peak at -0.23 V (vs. SCE). The addition of human serum albumin (HSA) into the ACBK solution resulted in the decrease of reductive peak currents without the change of the peak potential and no new peaks appeared on the cyclic voltammogram. In the absence and presence of HSA, the electrochemical parameters such as the formal potential E0, the electrode reaction standard rate constant k(s) and the charge transfer coefficient alpha of the interaction system were calculated and the results showed that there were no significant changes between each other. Thus, the interaction of ACBK with protein forms an electro-inactive supramolecular bio-complex, which induces the decrease of the free concentration of ACBK in the reaction solution, and the decrease of the reductive peak current of ACBK. The binding constant and the binding ratio are calculated as 1.29 x 10(8) and 1:2, respectively, and the interaction mechanism is discussed. Based on the binding reaction, this new electrochemical method is further applied to the determination of HSA with the linear range from 3.0-20.0 mg/L and the linear regression equation as deltaIp"(nA) = 10.08 + 19.90 C (mg/L). This method was further applied to determinate the content of protein in the healthy human serum samples with the results in good agreement with the traditional Coomassie brilliant blue G-250 spectrophotometric method.  相似文献   

16.
Purification of phospholipase D by two-phase affinity extraction   总被引:2,自引:0,他引:2  
An aqueous two-phase system of polyethylene glycol (PEG)-salt was used for purification of phospholipase D (PLD) from peanuts and carrots. Alginate, a known macroaffinity ligand for PLD, was incorporated in the PEG phase and resulted in 91 and 93% of the enzyme activity (from peanuts and carrots, respectively) getting partitioned in the PEG phase. The elution of the enzyme from alginate was facilitated by exploiting the fact that the latter can be reversibly precipitated in the presence of Ca2+. The enzyme was eluted from the polymer by using 0.5 M NaCl. Peanuts and carrots PLD could be purified 78- and 17-fold with 82 and 85% activity recovery, respectively. The purified enzyme from both sources gave a single band on sodium dodecyl sulfate-polyacrylamide gel (SDS-PAGE) electrophoresis.  相似文献   

17.
We have carried out density functional theory QM/MM calculations on the catalytic subunit of cAMP-dependent protein kinase (PKA). The QM/MM calculations indicate that the phosphorylation reaction catalyzed by PKA is mainly dissociative, and Asp166 serves as the catalytic base to accept the proton delivered by the substrate peptide. Among the key interactions in the active site, the Mg(2+) ions, glycine rich loop, and Lys72 are found to stabilize the transition state through electrostatic interactions. On the other hand, Lys168, Asn171, Asp184, and the conserved waters bound to Mg(2+) ions do not directly contribute to lower the energy barrier of the phosphorylation reaction, and possible roles for these residues are proposed. The QM/MM calculations with different QM/MM partition schemes or different initial structures yield consistent results. In addition, we have carried out 12 ns molecular dynamics simulations on both wild type and K168A mutated PKA, respectively, to demonstrate that the catalytic role of Lys168 is to keep ATP and substrate peptide in the near-attack reactive conformation.  相似文献   

18.
A simple procedure is described for the purification of phosphatidylcholine-hydrolyzing phospholipase C(PLC). Lecithin, the substrate for PLC, was ligated hydrophobically to octyl-Sepharose in 2 M (NH4)2SO4. The washed lecithin-conjugated resin was then used to purify PLC from crude preparations by affinity chromatography. PLC binds to the lecithin moiety in the presence of Zn2+ and is eluted with an acidic buffer containing EDTA. PLC activity was recovered in the eluate. Both sodium dodecyl sulphate polyacrylamide gel electrophoresis and pI electrofocusing showed that the eluate contained a single monomeric protein with an apparent molecular mass of 66 kDa and a pI of 5.5.  相似文献   

19.
The major house-dust mite allergen, Der f 2, stimulates the phospholipase D (PLD) in T lymphocytes from Dermatophagoides farinae specific allergic individuals. PLD activity increased more than two-fold in T cells from allergic patients compared with those cells from normal controls with maximal responses within 30 min after exposure of Der f 2. A well-known PLD activator PKC-alpha was found to be translocated to membrane from cytosol in Der f 2-treated T cells from Dermatophagoides farinae specific allergic individuals. Down-regulation of PKC-alpha with phorbol myristate acetate pretreatment for 24 h abolished Der f 2-induced PLD activation. Ro 320432, PKC inhibitor also reduced the effects of Der f 2-induced PLD activation suggesting that PKC-alpha acts as upstream activator of PLD in Der f 2-treated T cells. Taken together, the present data suggest that Der f 2 can stimulate PLD activity through the PKC-alpha activation in T cells from Dermatophagoides farinae allergic individuals.  相似文献   

20.
The substrate specificity of purified human protein kinase C was modulated by 12-O-tetradecanoyl-4 beta-phorbol-13-acetate (TPA), dioleoylglycerol, arachidonic acid and lipid A when histone type III-S and myelin basic protein were used as phosphate acceptors. Each activator also showed a distinct pattern in the stimulation of phosphorylation of the kinase itself and of cytosolic placental proteins. The nature of the substrate and the presence of calcium and phospholipid determined the magnitude of the effect observed upon addition of all activators and also the dose dependency of kinase activation by TPA. The apparent Km value for phosphorylation of histone type III-S by the kinase activated by phorbol ester alone and with calcium was 20-30 fold higher than that observed for the enzyme activated by calcium and phospholipid. These observations indicate that the nature and extent of cellular response induced by the activation of C-kinase(s) may be determined by the type of cellular stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号