首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 100-oriented ScN films was grown under N-rich conditions on 100-oriented Si using different Sc fluxes. The ScN films grew in an epitaxial cube-on-cube orientation, with [0 0 1]ScN//[0 0 1]Si and [1 0 0]ScN//[1 0 0]Si, despite the high (11%) lattice mismatch between ScN and Si. The film grain size increases and the film ω-FWHM decreases with increasing Sc flux, but the film roughness increases. Films grown under similar conditions on 111-oriented Si resulted in mixed 111 and 100 orientations, indicating that the 100 orientation is favoured both due to texture inheritance from the substrate and due to the growth conditions used.  相似文献   

2.
Two-dimensional (2D) periodic arrays of Co metal and Co silicide nanodots were successfully fabricated on (0 0 1)Si substrate by using the polystyrene (PS) nanosphere lithography (NSL) technique and thermal annealing. The epitaxial CoSi2 was found to start growing in samples after annealing at 500 °C. The sizes of the Co silicide nanodots were observed to shrink with annealing temperature. From the analysis of the selected-area electron diffraction (SAED) patterns, the crystallographic relationship between the epitaxial CoSi2 nanodots and (0 0 1)Si substrates was identified to be [0 0 1]CoSi2//[0 0 1]Si and (2 0 0)CoSi2//(4 0 0)Si. By combining the planview and cross-sectional TEM examination, the epitaxial CoSi2 nanodots formed on (0 0 1)Si were found to be heavily faceted and the shape of the faceted epitaxial CoSi2 nanodot was identified to be inverse pyramidal. The observed results present the exciting prospect that with appropriate controls, the PS NSL technique promises to offer an effective and economical patterning method for the growth of a variety of large-area periodic arrays of uniform metal and silicide nanostructures on different types of silicon substrates.  相似文献   

3.
Multi-domained heteroepitaxial rutile-phase TiO2 (1 0 0)-oriented films were grown on Si (1 0 0) substrates by using a 30-nm-thick BaF2 (1 1 1) buffer layer at the TiO2–Si interface. The 50 nm TiO2 films were grown by electron cyclotron resonance oxygen plasma-assisted electron beam evaporation of a titanium source, and the growth temperature was varied from 300 to 600 °C. At an optimal temperature of 500 °C, X-ray diffraction measurements show that rutile phase TiO2 films are produced. Pole figure analysis indicates that the TiO2 layer follows the symmetry of the BaF2 surface mesh, and consists of six (1 0 0)-oriented domains separated by 30° in-plane rotations about the TiO2 [1 0 0] axis. The in-plane alignment between the TiO2 and BaF2 films is oriented as [0 0 1] TiO2 || BaF2 or [0 0 1] TiO2 || BaF2 . Rocking curve and STM analyses suggest that the TiO2 films are more finely grained than the BaF2 film. STM imaging also reveals that the TiO2 surface has morphological features consistent with the BaF2 surface mesh symmetry. One of the optimally grown TiO2 (1 0 0) films was used to template a CrO2 (1 0 0) film which was grown via chemical vapor deposition. Point contact Andreev reflection measurements indicate that the CrO2 film was approximately 70% spin polarized.  相似文献   

4.
Effects of relaxation of interfacial misfit strain and non-stoichiometry on surface morphology and surface and interfacial structures of epitaxial SrTiO3 (STO) thin films on (0 0 1) Si during initial growth by molecular beam epitaxy (MBE) were investigated. In situ reflection high-energy electron diffraction (RHEED) in combination with X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectrometry (XPS) and transmission electron microscopy (TEM) techniques were employed. Relaxation of the interfacial misfit strain between STO and Si as measured by in situ RHEED indicates initial growth is not pseudomorphic, and the interfacial misfit strain is relaxed during and immediately after the first monolayer (ML) deposition. The interfacial strain up to 15 ML results from thermal mismatch strain rather than lattice mismatch strain. Stoichiometry of STO affects not only surface morphology but interfacial structure. We have identified a nanoscale Sr4Ti3O10 second phase at the STO/Si interface in a Sr-rich film.  相似文献   

5.
The structure and thermal stability of ZrO2 films grown on Si (1 0 0) substrates by metalorganic chemical vapor deposition have been studied by high-resolution transmission electron microscopy, selected area electron diffraction and X-ray energy dispersive spectroscopy. As-deposited films consist of tetragonal ZrO2 nanocrystallites and an amorphous Zr silicate interfacial layer. After annealing at 850°C, some monoclinic phase is formed, and the grain size is increased. Annealing a 6 nm thick film at 850°C in O2 revealed that the growth of the interfacial layer is at the expense of the ZrO2 layer. In a 3.0 nm thick Zr silicate interfacial layer, there is a 0.9 nm Zr-free SiO2 region right above the Si substrate. These observations suggest that oxygen reacted with the Si substrate to grow SiO2, and SiO2 reacted with ZrO2 to form a Zr silicate interfacial layer during the deposition and annealing. Oxygen diffusion through the tetragonal ZrO2 phase was found to be relatively easier than through the monoclinic phase.  相似文献   

6.
Selective MOVPE growth of GaN microstructure on silicon substrates has been investigated using SiO2 mask having circular or stripe window. In case of (0 0 1)substrate, grooves with (1 1 1) facets at the sides were made by using the etching anisotropy of a KOH solution. On the (1 1 1) facets of patterned silicon substrate (or on the as opened window region of (1 1 1) substrate), growth of wurtzite GaN was performed, of which the c-axis is oriented along the 1 1 1 axis of silicon. The photoluminescence and X-ray diffraction analysis were performed to characterize the single crystal to reveal the effect of the growth conditions of the intermediated layer and the microstructure.  相似文献   

7.
MgO films were grown on (0 0 1) yttria-stabilized zirconia (YSZ) substrates by molecular beam epitaxy (MBE). The crystalline structures of these films were investigated using X-ray diffraction and transmission electron microscopy. Growth temperature was varied from 350 to 550 °C, with crystalline quality being improved at higher temperatures. The MgO films had a domain structure: (1 1 1)[1 1 2¯]MgO(0 0 1)[1 0 0]YSZ with four twin variants related by a 90° in-plane rotation about the [1 1 1]MgO axis. The observed epitaxial orientation was compared to previous reports of films grown by pulsed laser deposition and sputtering and explained as resulting in the lowest interface energy.  相似文献   

8.
MOVPE growth of InN on sapphire substrates is compared using two different designs of horizontal reactor. The major difference between the two designs is a variation in the reactant-gas flow-spacing between the substrate and the ceiling of the quartz chamber: 33 mm for the Type A reactor and 14 mm for Type B. Compared with the Type A reactor, the Type B reactor brings about InN films with a larger grain size. This is especially true when InN is grown at 600°C using the Type B reactor, in which case the two-dimensional (2D) growth of InN is found to be extremely enhanced. An investigation of the NH3/TMIn molar ratio dependence of the surface morphology of grown InN films using the two reactors suggests that the enhanced 2D growth is attributed to the decrease in the effective NH3/TMIn ratio in the growth atmosphere. Even using the Type A reactor, a film with enhanced 2D growth can be obtained when the NH3/TMIn ratio is considerably low (1.8×104). The enhanced 2D growth results in a smaller XRC-FWHM (full-width at half maximum of the X-ray rocking curve) (1500 arcsec), than that for a 3D-grown film (5000 arcsec).  相似文献   

9.
The (Pb0.90La0.10)TiO3 [PLT] thick films (3.0 μm) with a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering method. The PLT thick films comprise five periodicities, the layer thicknesses of (Pb0.90La0.10)TiO3 and PbO in one periodicity are fixed. The PbO buffer layer improves the phase purity and electrical properties of the PLT thick films. The microstructure and electrical properties of the PLT thick films with a PbO buffer layer were studied. The PLT thick films with a PbO buffer layer possess good electrical properties with the remnant polarization (Pr=2.40 μC cm−2), coercive field (Ec=18.2 kV cm−1), dielectric constant (εr=139) and dielectric loss (tan δ=0.0206) at 1 kHz, and pyroelectric coefficient (9.20×10−9 C cm−2 K−1). The result shows the PLT thick film with a PbO buffer layer is a good candidate for pyroelectric detector.  相似文献   

10.
A comparative study of epitaxy of AlN, GaN and their alloys, grown on c-axis and off-axis substrates of single-crystal aluminum nitride has been carried out. Growth on off-axis (>30°) substrates appears to result in rough surfaces and the absence of two-dimensional electron gas (2DEG). However, smooth morphologies were demonstrated for both homoepitaxial and heteroepitaxial growth on on-axis (<2°) substrates. On one of these oriented substrates a 2DEG, with a mobility of 1000 cm2/V s and a sheet density of 8.5×1012 cm−2 at room temperature, was also demonstrated for the first time.  相似文献   

11.
The morphology and chemistry of epitaxial MgB2 thin films grown using reactive Mg evaporation on different substrates have been characterized by transmission electron microscopy methods. For polycrystalline alumina and sapphire substrates with different surface planes, an MgO transition layer was found at the interface region. No such layer was present for films grown on MgO and 4-H SiC substrates, and none of the MgB2 films had any detectable oxygen incorporation nor MgO inclusions. High-resolution electron microscopy revealed that the growth orientation of the MgB2 thin films was closely related to the substrate orientation and the nature of the intermediary layer. Electrical measurements showed that very low resistivities (several μΩ cm at 300 K) and high superconducting transition temperatures (38 to 40 K) could be achieved. The correlation of electrical properties with film microstructure is briefly discussed.  相似文献   

12.
Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and . A self-catalytic vapor–liquid–solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.  相似文献   

13.
AlN and GaN was deposited by molecular beam epitaxy (MBE) on 3C-SiC(0 0 1) substrates on low-temperature (LT) GaN and AlN buffer layers. It is shown that not only GaN but also epitaxial AlN can be stabilized in the metastable zincblende phase. The zincblende AlN is only obtained on a zincblende LT-GaN buffer layer; on the other hand, AlN crystallizes in the wurtzite phase if it is grown directly on a 3C-SiC(0 0 1) substrate or on a LT-AlN buffer layer. The structural properties of the layers and in particular the orientation relationship of the wurtzite AlN on the 3C-SiC(0 0 1) were analyzed by conventional and high-resolution transmission electron microscopy.  相似文献   

14.
We have fabricated LaNiO3 and BaTiO3 films using the rf sputtering method. The LaNiO3 were deposited on Si substrates, demonstrating a (1 0 0) highly oriented structure and nanocrystalline characteristic with a grain size of 30 nm. The BaTiO3 thin films were deposited on the LaNiO3 buffer layers, and have exhibited a (1 0 0) texture with a thickness of 400 nm. A smooth interface is obtained between the LaNiO3 bottom electrode and the BaTiO3 film from cross-section observations by scanning electron microscopy. The bi-layer films show a dense and column microstructure with a grain size of 60 nm. Ferroelectric characterizations have been obtained for the BaTiO3 films. The remnant polarization and coercive field are 2.1 μC/cm2 and 45 kV/cm, respectively. The leak current measurements have shown a good insulating property.  相似文献   

15.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

16.
Epitaxial Ni films were deposited on (0 0 1)MgO by DC magnetron sputtering under ultra-high vacuum conditions for studies involving magnetic-multilayer applications. The deposition temperatures of the Ni films studied in this work were 100 and 400°C. Examination by transmission electron microscopy (TEM) and electron diffraction revealed that the film deposited at the lower temperature was predominately Ni[0 0 1]MgO[0 0 1] and Ni(0 1 0)MgO(0 1 0) oriented and smooth, as expected. However, the higher temperature films were predominately of the Ni MgO[0 0 1] and Ni MgO(1 0 0) orientation and facetted. The orientation has been confirmed by X-ray diffraction, where this orientation was observed to be four-fold degenerate. For each of these four orientations there also existed a twin orientation, reflected about the MgO(1 0 0) planes, giving eight possible orientations for the Ni crystallites on MgO. This epitaxial relationship was studied by dark-field TEM and electron diffraction. Because these films were polycrystalline and hence produced many diffraction spots from both the Ni and MgO with similar lattice spacings, electron diffraction patterns of the films were indexed using an electron diffraction image processing (EDIP) technique. In this technique, the polycrystalline electron diffraction pattern was converted into a graph, with the x-axis displaying lattice spacings and the y-axis, integrated intensity.  相似文献   

17.
The epitaxial thickening of polycrystalline Si films on glass substrates is of great interest for the realization of crystalline Si thin film solar cells and other large-area thin film devices. In this paper we report on the epitaxial growth of Si at temperatures below on polycrystalline seed layers using electron–cyclotron resonance chemical vapor deposition. The Si seed layers were prepared by aluminum-induced crystallization. The quality of the ECRCVD-grown films strongly depends on the orientation of the underlying seed layer grains. Due to a mainly favorable orientation of the seed layers more than 73% of the substrate area were epitaxially thickened. It turned out that a (1 0 0) preferential orientation is favorable for epitaxial thickening. This, however, is not the only requirement for successful low-temperature epitaxial growth of Si.  相似文献   

18.
The effect of the N/Al ratio of AlN buffers on the optical and crystal quality of GaN films, grown by metalorganic chemical vapor deposition on Si(1 1 1) substrates, has been investigated. By optimizing the N/Al ratio during the AlN buffer, the threading dislocation density and the tensile stress have been decreased. High-resolution X-ray diffraction exhibited a (0 0 0 2) full-width at half-maximum as low as 396 acrsec. The variations of the tensile stress existing in the GaN films were approved by the redshifts of the donor bound exiton peaks in the low-temperature photoluminescence measurement at 77 K.  相似文献   

19.
The growth of type-II textured tungsten disulfide (WS2) thin films by solid state reaction between the spray deposited WO3 and gaseous sulfur vapors with Pb interfacial layer has been studied. X-ray diffraction (XRD) technique is used to measure the degree of preferred orientation ‘S’ and texture of WS2 films. Scanning electron microscopy (SEM) and transmission electron microscopy techniques have been used to examine the microstructure and morphology. The electronic structure and chemical composition were studied using X-ray photoelectron spectroscopy (XPS). The use of Pb interfacial layer for the promotion of type-II texture in WS2 thin films is successfully demonstrated. The presence of (0 0 3 l), (where l=1, 2, 3, …) family of planes in the XRD pattern indicates the strong type-II texture of WS2 thin films. The crystallites exhibit rhombohedral (3R) structure. The large value of ‘S’ (1086) prompts the high degree of preferred orientation as well. The stratum of crystallites with their basal plane parallel to the substrate surface is seen in the SEM image. The EDS and XPS analyses confirm the tungsten to sulfur atomic ratio as 1:1.75. We purport that Pb interfacial layer enhances type-II texture of WS2 thin films greatly.  相似文献   

20.
High quality zinc oxide (ZnO) films were obtained by thermal oxidation of high quality ZnS films. The ZnS films were deposited on a Si substrate by a low-pressure metalorganic chemical vapor deposition technique. X-ray diffraction spectra indicate that high quality ZnO films possessing a polycrystalline hexagonal wurtzite structure with preferred orientation of (0 0 2) were obtained. A fourth order LO Raman scattering was observed in the films. In photoluminescence (PL) measurements, a strong PL with a full-width at half-maximum of 10 nm around 380 nm was obtained for the samples annealed at 900°C at room temperature. The maximum PL intensity ratio of the UV emission to the deep-level emission is 28 at room temperature, providing evidence of the high quality of the nanocrystalline ZnO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号