首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shivaji Sircar 《Adsorption》2006,12(4):259-266
An analytical mathematical model is used to investigate the influence of minute adsorbent temperature changes on the kinetics of sorption of a gaseous adsorbate from mixture with a carrier gas using a differential closed loop recycle method. Isothermal operation may not be achieved even when a very high gas circulation rate is used. Very small changes in the adsorbent temperature during the process can cause substantial departure from isothermal uptake behavior. It is shown that the kinetic process can be assumed to be isothermal only for trace adsorbate concentrations. A criterion for validity of isothermal data analysis is proposed.  相似文献   

2.
S. Sircar  J.R. Hufton 《Adsorption》2000,6(2):137-147
The Linear Driving Force (LDF) model for gas adsorption kinetics is frequently and successfully used for analysis of adsorption column dynamic data and for adsorptive process designs because it is simple, analytic, and physically consistent. Yet, there is a substantial difference in the characteristics of isothermal batch uptake curves on adsorbent particles by the LDF and the more rigorous Fickian Diffusion (FD) model. It is demonstrated by using simple model systems that the characteristics of the adsorption kinetics at the single pore or the adsorbent particle level are lost in (a) evaluating overall uptake on a heterogeneous porous solid, (b) calculating breakthrough curves from a packed adsorbent column, and (c) establishing the efficiency of separation by an adsorptive process due to repeated averaging of the base kinetic property. That is why the LDF model works in practice.  相似文献   

3.
The thermodynamics of adsorption equilibrium with a single-component gas phase have been analyzed for two different models of adsorption. It has been shown that with a cell model of adsorption, the differential energy of the adsorbent/adsorbate system is expressed by the same formula as in the other model, in terms of quantities characterizing the equilibrium gas. An expression is derived for the differential energy, with deformation of the adsorbent taken into account. The two methods of calculating the isosteric heat of adsorption are compared.Institute of Physical Chemistry, Russian Academy of Sciences, Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 19–23, January, 1992.  相似文献   

4.
Efficient desorption of selectively adsorbed N2 from air in a packed column of LiX zeolite by rapidly purging the adsorbent with an O2 enriched gas is an important element of a rapid cyclic pressure swing adsorption (RPSA) process used in the design of many medical oxygen concentrators (MOC). The amount of O2 purge gas used in the desorption process is a sensitive variable in determining the overall separation performance of a MOC unit. Various resistances like (a) adsorption kinetics, (b) column pressure drop, (c) non-isothermal column operation, (d) gas phase mass and thermal axial dispersions, and (e) gas-solid heat transfer kinetics determine the amount of purge gas required for efficient desorption of N2. The impacts of these variables on the purge efficiency were numerically simulated using a detailed mathematical model of non-isothermal, non-isobaric, and non-equilibrium desorption process in an adiabatic column. The purge gas quantity required for a specific desorption duty (fraction of total N2 removed from a column) is minimum when the process is carried out under ideal, hypothetical conditions (isothermal, isobaric, and governed by local thermodynamic equilibrium). All above-listed non-idealities (a?Ce) can increase the purge gas quantity, thereby, lowering the efficiency of the desorption process compared to the ideal case. Items (a?Cc) are primarily responsible for inefficient desorption by purge, while gas phase mass and thermal axial dispersions do not affect the purge efficiency under the conditions of operation used in this study. Smaller adsorbent particles can be used to reduce the negative effects of adsorption kinetics, especially for a fast desorption process, but increased column pressure drop adds to purge inefficiency. A?particle size range of ??300?C500???m is found to require a?minimum purge gas amount for a given desorption duty. The purge gas requirement can be further reduced by employing a pancake column design (length to diameter ratio, L/D<0.2) which lowers the column pressure drop, but hydrodynamic inefficiencies (gas mal-distribution, particle agglomeration) may be introduced. Lower L/D also leads to a smaller fraction of the column volume that is free of N2 at the purge inlet end, which is required for maintaining product gas purity. The simulated gas and solid temperature profiles inside the column at the end of the rapid desorption process show that a finite gas-solid heat transfer coefficient affects these profiles only in the purge gas entrance region of the column. The profiles in the balance of the column are nearly invariant to the values of that coefficient. Consequently, the gas-solid heat transfer resistance has a minimum influence on the overall integrated N2 desorption efficiency by O2 purge for the present application.  相似文献   

5.
A volume step method measuring the pressure and the adsorbent temperature of an adsorbent-adsorbate system has been developped. It is shown that this method allows the determination of all the relevant parameters of an adsorption process, kinetic as well as thermodynamic in case of Linear Driving Force mass transfer. The method for determining the parameters can be extended to the case of diffusive mass transfer if the mass transfer kinetics is faster than the heat transfer kinetics. An example is given, showing the determination of the diffusion coefficient of carbon dioxide in NaX zeolite pellets and the change of the diffusion coefficient and of the isosteric heat of adsorption when the adsorbent is not fully dehydrated.  相似文献   

6.
The required durations of pressurization and depressurization steps of a rapid pressure swing adsorption process are primarily governed by adsorbent particle size, adsorption kinetics, column pressure drop, column length to diameter ratio, and the valve constant of the gas inlet and outlet control valve attached to the adsorbent column. A numerical model study of the influence of these variables for an adiabatic LiX zeolite column is presented using pure N2 as an adsorbate gas. An adsorbent particle size range of 200–350 μm was found to minimize (<1 s) the times required for the pressurization and depressurization steps.  相似文献   

7.
A novel rapid pressure swing adsorption (RPSA) process is described for production of 25–50% oxygen enriched air. The embodiment consists of one or more pairs of adsorbent layers contained in a single adsorption vessel. The layers undergo simultaneous pressurization-adsorption and simultaneous depressurization-purge steps. A total cycle time of 6–20 seconds is used. The process yields a very large specific oxygen production rate and a reasonable oxygen recovery for production of 20–50 mole% oxygen enriched gas.It is demonstrated by a simple mathematical model of isothermal single adsorbate pressure swing ad(de)sorption concept on a single adsorbent particle that the specific production rate of a PSA process cannot be indefinitely increased by reducing the cycle time of operation when adsorbate mass transfer resistances are finite.  相似文献   

8.
The behavior of the thermodynamic functions for the adsorption system krypton—microporous carbon sorbent ACC is described. The dependences of the differential molar isosteric heat of adsorption, entropy, enthalpy, heat capacity, and differential molar energy of the adsorption system on the adsorption equilibrium parameters were studied over the temperature range from 178 to 393 K and at pressures ranging from 1 to 6?106 Pa. Consideration of the non-ideality of gas phase and non-inertness of the adsorbent leads to a temperature dependence of the thermodynamic functions of the studied adsorption system, especially in the range of high pressures of the adsorptive. The non-ideality of the gas phase and the energetics of the adsorbent—adsorbate system exert the most significant effect on the thermodynamic functions. The non-inertness of the adsorbent in the investigated range of parameters of the adsorption system has a weak effect on the thermodynamic functions of adsorption. In the region of high filling of ACC micropores, the entropy increases, indicating the existence of processes, which change the structure of the adsorbate in the micropores, in particular, to form associates.  相似文献   

9.
A bimolecular reaction model was used to describe the adsorption process in continuous flow columns filled with solid adsorbents. The analytical solution of the model for low gas concentrations and a cascade-type numerical method for higher gas concentrations were developed. An air flow apparatus using activated carbon as adsorbent and methyl-iodide labelled with125I as adsorbate was constructed for measuring breakthrough- and accumulation curves.  相似文献   

10.
Separation of carbon dioxide and methane is an important issue in upgrading low-quality natural gas. Adsorption equilibria and kinetics of CO(2) and CH(4) on a copper metal-organic framework (MOF), Cu(hfipbb)(H(2)hfipbb)(0.5) [H(2)hfipbb=4,4'-(hexafluoroisopropylidene) bis(benzoic acid)], were investigated to evaluate the feasibility of removing CO(2) from CH(4) in a pressure swing adsorption process using this new MOF adsorbent. The heat of adsorption of CO(2) on the Cu-MOF at zero-coverage (29.7 kJ/mol) is much lower than those on a carbon molecular sieve and a zeolite 5A adsorbent; and the heat of adsorption of CH(4) on the Cu-MOF (21.4 kJ/mol) is similar to that on the zeolite 5A adsorbent and smaller than that on a carbon molecular sieve. The Cu-MOF being investigated has apertures of (~3.5 × 3.5 ?), which favors the kinetically controlled separation of CO(2) and CH(4). The kinetic selectivity is found to be 26 at 298 K, and the overall selectivity (combining the equilibrium and kinetic effects) is about 25 for an adsorption separation process. These results suggest that the Cu-MOF adsorbent is an attractive alternative adsorbent for the CO(2)/CH(4) separation.  相似文献   

11.
通过水热反应制备了新型SnNb2O6纳米片吸附剂, 并利用X射线衍射(XRD)、 扫描电子显微镜(SEM)和比表面积及孔径分析等手段对其结构和形貌进行了表征. 以第三代喹诺酮类抗生素达氟沙星为吸附质, 进行了影响因素实验、 吸附动力学实验及等温吸附实验, 探究了SnNb2O6对达氟沙星的吸附性能和吸附机理. 实验结果表明, SnNb2O6吸附剂具有片状形貌, 层状单斜相晶体结构, 比表面积为52.89 m2/g. 吸附剂用量、 吸附温度、 溶液pH值及吸附时间均对吸附率有一定影响. 相应的等温吸附曲线可以较好地拟合Freundlich方程, 且动力学实验数据可以用拟二级动力学方程描述, 其中液膜扩散为主要控制步骤. 在35 ℃下, 吸附剂用量为0.09 g, 控制溶液pH值为6.02时, 吸附30 min即可达到较好效果, 此时达氟沙星的吸附去除率为93.1%.  相似文献   

12.
The behavior of the thermodynamic functions (differential molar isosteric heat of adsorption, entropy, enthalpy, and heat capacity) of the adsorption system methane—microporous carbon adsorbent ACC was analyzed at different adsorption equilibrium parameters in the temperature interval from 177.65 to 393 K and in the pressure range from 1 Pa to 6 MPa. The influence of the nonideal character of the gas phase and noninertness of the adsorbent were taken into account, which resulted in the appearance of the temperature dependence of the isosteric heat of adsorption, especially in the region of high pressures of the adsorptive. For the system studied, nonideality of the gas phase exerts the main effect on the thermodynamic functions of the adsorption system. In this interval of the parameters of the adsorption system, the correction to the noninertness of the adsorbent is not higher than 2.5%. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1765–1771, September, 2008.  相似文献   

13.
This work is focused on the gas and liquid-phase adsorption of pollutants: propanol, 2-butanone, phenol and nicotine onto zeolites (H-BETA, H-ZSM-5, H-MCM-22, and clinoptilolite). Textural properties and origin of zeolites were taken into account as criteria of adsorbents selection. The aldehyde and the ketone were adsorbed in the gas phase using microcalorimetry linked to a volumetric line to evaluate adsorption. Adsorptions in water were carried out for phenol and nicotine and the evolved heats during adsorption were measured by a differential heat flow reaction calorimeter with stirring. Results are discussed in relation with the pore sizes and various interactions which could occur between the adsorbent and the adsorbate.  相似文献   

14.
The heat capacity or reversing heat flow signal from modulated‐temperature differential scanning calorimetry can be used to measure the onset of phase separation in a poly(vinylmethylether)/water mixture, clearly showing the special type III lower critical solution temperature demixing behavior. Characteristic of this demixing behavior is a three‐phase region, which is detected in the nonreversing heat flow signal. Stepwise quasi‐isothermal measurements through the phase transition show large excess contributions in the (apparent) heat capacity signal, caused by demixing/remixing heat effects on the timescale of the modulation (fast process). These excess contributions and their time‐dependent evolutions (slow process) are useful in understanding the kinetics of phase separation and the morphology (interphase) development. Care has to be taken, however, in interpreting the heat capacity signal derived from the amplitude of the modulated heat flow because nonlinear effects lead to the occurrence of higher harmonics. Therefore, the raw heat flow signal for quasi‐isothermal demixing and remixing measurements is also examined in the time domain. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1824–1836, 2003  相似文献   

15.
Han QJ  Wu HL  Cai CB  Tang LJ  Yu RQ 《Talanta》2008,76(4):752-757
This paper has demonstrated the study on the adsorption kinetics of orthoxylene on silica gel with a novel experimental methodology. In the method, there was a differential adsorption bed (DAB) where the solid adsorbent always contacted with the same bulk concentration of the adsorbate vapor, and the DAB was monitored with near-infrared diffuse reflectance spectroscopy (NIRDRS) continuously as well as non-invasively. Local partial least squares (PLS) algorithm was suggested to replace normal global PLS method in multivariate calibration models for processing NIRDRS data, because the concentration of the adsorbate on the adsorbent varied greatly as the adsorption process was going on. In this way, we, conveniently as well as promptly, obtained instantaneous adsorption rates of several orthoxylene/silica gel adsorption processes under different conditions like partial pressure of orthoxylene vapor and velocity of gas, and discovered that the adsorption process was physical adsorption, and mainly controlled by external diffusion.  相似文献   

16.
Modulated temperature differential scanning calorimetry (MTDSC) is used to study simultaneously the evolution of heat flow and heat capacity for the isothermal and non-isothermal cure of an epoxy-anhydride thermosetting system. Modelling of the (heat flow related) chemical kinetics and the (heat capacity related) mobility factor contributes to a quantitative construction of Temperature-Time-Transformation (TTT) and Continuous-Heating-Transformation (CHT) diagrams for the thermosetting system.  相似文献   

17.
《Microporous Materials》1996,5(6):347-355
A mathematical model was formulated for the bulk separation of binary gas mixtures in micro-structured pressure swing adsorption (PSA) modules consisting of parallel channels lined with adsorbent. Axial and radial dispersion in the gas phase and mass transfer resistance in the adsorbent phase were taken into consideration. The partial differential equations governing the concentration profiles in the gas and adsorbent phases were solved by orthogonal collocation. The model enabled the prediction of the concentration profiles in both the gas and adsorbent phases (as a function of location and time), the product purity and the separation efficiency. The effects of model parameters and operating conditions on the module performance were investigated. Simulation of oxygen enrichment from air by molecular sieve 13X indicated that long modules with thin layers of adsorbent, narrow gas flow channel heights and large numbers of flow channels give the best separation.  相似文献   

18.
A. Hauer 《Adsorption》2007,13(3-4):399-405
The evaluation of solid adsorbents in open sorption systems for heating, cooling and thermal energy storage (TES) applications is crucial for the ecological and economical performance of these systems. An appropriate adsorbent has to reach the temperature limit given by the heating/cooling system of the consumer. It has to provide high energy efficiency and a high energy density for storage applications. A method for an easy evaluation of different adsorbents for a specific application has been developed. The method is based on the adsorption equilibrium of the adsorbent and water vapor. The crucial property for the discussed field of applications is the differential heat of adsorption. Criteria for the evaluation of the adsorbent are the breakthrough curves (responsible for the dynamics of the process), the possible temperature lift (or the dehumidification) of the air, the thermal COP and the storage capacity.  相似文献   

19.
A carbon adsorbent was produced and used to volumetrically measure nitrogen adsorption isotherms from 93 to 298 K and up to 7 MPa. The isosteric heat of adsorption was determined to range between -9.5 and -16 kJ/mol. The excess adsorption isotherms were modeled using an approach based on a modified Dubinin-Astakhov adsorption model, adapted for excess adsorption, which provided an accurate fit for all supercritical isotherms. An expression for the differential energy of adsorption as a function of pressure was developed using the Dubinin-Astakhov isotherm. The energy of adsorption for the isotherms measured was found to range from -8 to -15 kJ/mol as a function of pressure.  相似文献   

20.
Adsorption of Cr(VI) using activated neem leaves: kinetic studies   总被引:1,自引:0,他引:1  
In the present study, adsorbent is prepared from neem leaves and used for Cr(VI) removal from aqueous solutions. Neem leaves are activated by giving heat treatment and with the use of concentrated hydrochloric acid (36.5 wt%). The activated neem leaves are further treated with 100 mmol of copper solution. Batch adsorption studies demonstrate that the adsorbent prepared from neem leaves has a significant capacity for adsorption of Cr(VI) from aqueous solution. The parameters investigated in this study include pH, contact time, initial Cr(VI) concentration and adsorbent dosage. The adsorption of Cr(VI) is found to be maximum (99%) at low values of pH in the range of 1-3. A small amount of the neem leaves adsorbent (10 g/l) could remove as much as 99% of Cr(VI) from a solution of initial concentration 50 mg/l. The adsorption process of Cr(VI) is tested with Langmuir isotherm model. Application of the Langmuir isotherm to the system yielded maximum adsorption capacity of 62.97 mg/g. The dimensionless equilibrium parameter, R L, signifies a favorable adsorption of Cr(VI) on neem leaves adsorbent and is found to be between 0.0155 and 0.888 (0<R L<1). The adsorption process follows second order kinetics and the corresponding rate constant is found to be 0.00137 g/(mg) (min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号