首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Femtosecond time‐resolved spectroscopy in the visible and IR range was utilized to study the primary reaction dynamics of the proteorhodopsin (PR) D97N mutant in comparison with wild type PR at different pH values. The analysis of the data obtained in the mid‐IR closely resembles the results for wild type PR. The observation of the first ground state intermediate K is initially obscured by a complex reaction scheme of vibrational relaxation and heating effects, but its spectral signature clearly emerges at long delay times. In the visible range, a biexponential decay of the excited state within 30 ps and the formation of the K photoproduct is observed. The decay time constants derived for the D97N mutant in D2O are slightly larger than in H2O due to H/D exchange. This kinetic isotope effect is even less pronounced than for wild type PR at pH 6. These results support the current notion of a pH dependent hydrogen bonding network in the retinal binding pocket of PR and a weaker interaction between the retinal Schiff base and the counter ion complex compared to bacteriorhodopsin.  相似文献   

2.
The proteorhodopsin (PR) family found in bacteria near the ocean's surface consists of hundreds of PR variants color-tuned to their environment. PR contains a highly conserved single histidine at position 75, which is not found in most other retinal proteins. Using (13)C and (15)N MAS NMR, we were able to prove for green PR that His75 forms a pH-dependent H-bond with the primary proton acceptor Asp97, which explains its unusually high pK(a). The functional role of His75 has been studied using site-directed mutagenesis and time-resolved optical spectroscopy: Ultrafast vis-pump/vis-probe experiments on PR(H75N) showed that the primary reaction dynamics is retained, while flash photolysis experiments revealed an accelerated photocycle. Our data show the formation of a pH-dependent His-Asp cluster which might be typical for eubacterial retinal proteins. Despite its stabilizing function, His75 was found to slow the photocycle in wild-type PR. This means that PR was not optimized by evolution for fast proton transfer, which raises questions about its true function in vivo.  相似文献   

3.
The RHO gene encodes the G-protein-coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light-activated state by solution and MAS-NMR spectroscopy. We found two long-lived dark states for the G90D mutant with the 11-cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11-cis retinal caused by the mutation-induced distortion on the salt bridge formation in the binding pocket. Time-resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle.  相似文献   

4.
The RHO gene encodes the G‐protein‐coupled receptor (GPCR) rhodopsin. Numerous mutations associated with impaired visual cycle have been reported; the G90D mutation leads to a constitutively active mutant form of rhodopsin that causes CSNB disease. We report on the structural investigation of the retinal configuration and conformation in the binding pocket in the dark and light‐activated state by solution and MAS‐NMR spectroscopy. We found two long‐lived dark states for the G90D mutant with the 11‐cis retinal bound as Schiff base in both populations. The second minor population in the dark state is attributed to a slight shift in conformation of the covalently bound 11‐cis retinal caused by the mutation‐induced distortion on the salt bridge formation in the binding pocket. Time‐resolved UV/Vis spectroscopy was used to monitor the functional dynamics of the G90D mutant rhodopsin for all relevant time scales of the photocycle. The G90D mutant retains its conformational heterogeneity during the photocycle.  相似文献   

5.
Rational redesign of the binding pocket of Cellular Retinoic Acid Binding Protein II (CRABPII) has provided a mutant that can bind retinal as a protonated Schiff base, mimicking the binding observed in rhodopsin. The reengineering was accomplished through a series of choreographed manipulations to ultimately orient the reactive species (the epsilon-amino group of Lys132 and the carbonyl of retinal) in the proper geometry for imine formation. The guiding principle was to achieve the appropriate Bürgi-Dunitz trajectory for the reaction to ensue. Through crystallographic analysis of protein mutants incapable of forming the requisite Schiff base, a highly ordered water molecule was identified as a key culprit in orienting retinal in a nonconstructive manner. Removal of the ordered water, along with placing reinforcing mutations to favor the desired orientation of retinal, led to a triple mutant CRABPII protein capable of nanomolar binding of retinal as a protonated Schiff base. The high-resolution crystal structure of all-trans-retinal bound to the CRABPII triple mutant (1.2 A resolution) unequivocally illustrates the imine formed between retinal and the protein.  相似文献   

6.
Light absorption by the visual pigment rhodopsin leads to vision via a complex signal transduction pathway that is initiated by the ultrafast and highly efficient photoreaction of its chromophore, the retinal protonated Schiff base (RPSB). Here, we investigate this reaction in real time by means of unrestrained molecular dynamics simulations of the protein in a membrane mimetic environment, treating the chromophore at the density functional theory level. We demonstrate that a highly strained all-trans RPSB is formed starting from the 11-cis configuration (dark state) within approximately 100 fs by a minor rearrangement of the nuclei under preservation of the saltbridge with Glu113 and virtually no deformation of the binding pocket. Hence, the initial step of vision can be understood as the compression of a molecular spring by a minor change of the nuclear coordinates. This spring can then release its strain by altering the protein environment.  相似文献   

7.
The retinal protein proteorhodopsin is a homolog of the well‐characterized light‐driven proton pump bacteriorhodopsin. Basic mechanisms of proton transport seem to be conserved, but there are noticeable differences in the pH ranges of proton transport. Proton transport and protonation state of a carboxylic acid side chain, the primary proton acceptor, are correlated. In case of proteorhodopsin, the pKa of the primary proton acceptor Asp‐97 (pKa ≈ 7.5) is unexpectedly close to environmental pH (pH ≈ 8). A significant fraction of proteorhodopsin is possibly inactive at natural pH, in contrast to bacteriorhodopsin. We investigated photoinduced kinetics of proteorhodopsin between pH 5 and pH 9 by time resolved UV/vis absorption spectroscopy. Kinetics is inhomogeneous within that pH region and can be considered as a superposition of two fractions. These fractions are correlated with the Asp‐97 titration curve. Beside Asp‐97, protonation equilibria of other groups influence kinetics, but the observations do not point toward major differences of primary proton acceptor function in proteorhodopsin and bacteriorhodopsin. The pKa of proteorhodopsin and some of its variants is suspected to be an example of molecular adaptation to the physiology of the original organisms.  相似文献   

8.
Amprenavir (APV) is a high affinity (0.15 nM) HIV-1 protease (PR) inhibitor. However, the affinities of the drug resistant protease variants V32I, I50V, I54V, I54M, I84V and L90M to amprenavir are decreased 3 to 30-fold compared to the wild-type. In this work, the popular molecular mechanics Poisson-Boltzmann surface area method has been used to investigate the effectiveness of amprenavir against the wild-type and these mutated protease variants. Our results reveal that the protonation state of Asp25/Asp25′ strongly affects the dynamics, the overall affinity and the interactions of the inhibitor with individual residues. We emphasize that, in contrast to what is often assumed, the protonation state may not be inferred from the affinities but requires pKa calculations. At neutral pH, Asp25 and Asp25′ are ionized or protonated, respectively, as suggested from pKa calculations. This protonation state was thus mainly considered in our study. Mutation induced changes in binding affinities are in agreement with the experimental findings. The decomposition of the binding free energy reveals the mechanisms underlying binding and drug resistance. Drug resistance arises from an increase in the energetic contribution from the van der Waals interactions between APV and PR (V32I, I50V, and I84V mutant) or a rise in the energetic contribution from the electrostatic interactions between the inhibitor and its target (I54M and I54V mutant). For the V32I mutant, also an increased free energy for the polar solvation contributes to the drug resistance. For the L90M mutant, a rise in the van der Waals energy for APV-PR interactions is compensated by a decrease in the polar solvation free energy such that the net binding affinity remains unchanged. Detailed understanding of the molecular forces governing binding and drug resistance might assist in the design of new inhibitors against HIV-1 PR variants that are resistant against current drugs.  相似文献   

9.
Green fluorescent protein (GFP) mutant S65T/H148D has been proposed to host a photocycle that involves an excited‐state proton transfer between the chromophore (Cro) and the Asp148 residue and takes place in less than 50 fs without a measurable kinetic isotope effect. It has been suggested that the interaction between the unsuspected Tyr145 residue and the chromophore is needed for the ultrafast sub‐50 fs rise in fluorescence. To verify this, we have performed a computer‐aided mutagenic study to introduce the additional mutation Y145F, which eliminates this interaction. By means of QM/MM molecular dynamics simulations and time‐dependent density functional theory studies, we have assessed the importance of the Cro–Tyr145 interaction and the solvation of Asp148 and shown that in the triple mutant S65T/H148D/Y145F a significant loss in the ultrafast rise of the Stokes‐shifted fluorescence should be expected.  相似文献   

10.
The photocycle of channelrhodopsin‐2 is investigated in a comprehensive study by ultrafast absorption and fluorescence spectroscopy as well as flash photolysis in the visible spectral range. The ultrafast techniques reveal an excited‐state decay mechanism analogous to that of the archaeal bacteriorhodopsin and sensory rhodopsin II from Natronomonas pharaonis. After a fast vibrational relaxation of the excited‐state population with 150 fs its decay with mainly 400 fs is observed. Hereby, both the initial all‐trans retinal ground state and the 13‐cis‐retinal K photoproduct are populated. The reaction proceeds with a 2.7 ps component assigned to cooling processes. Small spectral shifts are observed on a 200 ps timescale. They are attributed to conformational rearrangements in the retinal binding pocket. The subsequent dynamics progresses with the formation of an M‐like intermediate (7 and 120 μs), which decays into red‐shifted states within 3 ms. Ground‐state recovery including channel closing and reisomerization of the retinal chromophore occurs in a triexponential manner (6 ms, 33 ms, 3.4 s). To learn more about the energy barriers between the different photocycle intermediates, temperature‐dependent flash photolysis measurements are performed between 10 and 30 °C. The first five time constants decrease with increasing temperature. The calculated thermodynamic parameters indicate that the closing mechanism is controlled by large negative entropy changes. The last time constant is temperature independent, which demonstrates that the photocycle is most likely completed by a series of individual steps recovering the initial structure.  相似文献   

11.
NO is an important signaling molecule in human tissue. However, the mechanisms by which this molecule is controlled and directed are currently little understood. Nitrophorins (NPs) comprise a group of ferriheme proteins originating from blood-sucking insects that are tailored to protect and deliver NO via coordination to and release from the heme iron. Therefore, the kinetics of the association and dissociation reactions were studied in this work using the ferroheme-CO complexes of NP4, NP4(D30N), and NP7 as isoelectronic models for the ferriheme-NO complexes. The kinetic measurements performed by nanosecond laser-flash-photolysis and stopped-flow are accompanied by resonance Raman and FT-IR spectroscopy to characterize the carbonyl species. Careful analysis of the CO rebinding kinetics reveals that in NP4 and, to a larger extent, NP7 internal gas binding cavities are located, which temporarily trap photodissociated ligands. Moreover, changes in the free energy barriers throughout the rebinding and release pathway upon increase of the pH are surprisingly small in case of NP4. Also in case of NP4, a heterogeneous kinetic trace is obtained at pH 7.5, which corresponds to the presence of two carbonyl species in the heme cavity that are seen in vibrational spectroscopy and that are due to the change of the distal heme pocket polarity. Quantification of the two species from FT-IR spectra allowed the fitting of the kinetic traces as two processes, corresponding to the previously reported open and closed conformation of the A-B and G-H loops. With the use of the A-B loop mutant NP4(D30N), it was confirmed that the kinetic heterogeneity is controlled by pH through the disruption of the H-bond between the Asp30 side chain and the Leu130 backbone carbonyl. Overall, this first study on the slow phase of the dynamics of diatomic gas molecule interaction with NPs comprises an important experimental contribution for the understanding of the dynamics involved in the binding/release processes of NO/CO in NPs.  相似文献   

12.
13.
The rebinding of CO to myoglobin (Mb) from locations around the active site is studied using a combination of molecular dynamics and stochastic simulations for native and L29F mutant Mb. The interaction between the dissociated ligand and the protein environment is described by the recently developed fluctuating three-point charge model for the CO molecule. Umbrella sampling along trajectories, previously found to sample the binding site (B) and the Xe4 pocket, is used to construct free-energy profiles for the ligand escape. On the basis of the Smoluchowski equation, the relaxation of different initial population distributions is followed in space and time. For native Mb at room temperature, the calculated rebinding times are in good agreement with experimental values and give an inner barrier of 4.3 kcal/mol between the docking site B (Mb...CO) and the A state (bound MbCO), compared to an effective barrier, Heff, of 4.5 kcal/mol and barriers into the majority conformation A1 and the minority conformation A3 of 2.4 and 4.3 kcal/mol, respectively. In the case of the L29F mutant, the free-energy surface is flatter and the dynamics is much more rapid. As was found in experiment, escape to the Xe4 pocket is facile for L29F whereas, for native Mb, the barriers to this site are larger. At lower temperatures, the rebinding dynamics is delayed by orders of magnitude also due to increased barriers between the docking sites.  相似文献   

14.
Copper ions have been proposed to intervene in deleterious processes linked to the development of Alzheimer's disease (AD). As a direct consequence, delineating how Cu(II) can be bound to amyloid-β (Aβ) peptide, the amyloidogenic peptide encountered in AD, is of paramount importance. Two different forms of [Cu(II)(Aβ)] complexes are present near physiological pH, usually noted components I and II, the nature of which is still widely debated in the literature, especially for II. In the present report, the phenomenological pH-dependent study of Cu(II) coordination to Aβ and to ten mutants by EPR, CD, and NMR techniques is described. Although only indirect insights can be obtained from the study of Cu(II) binding to mutated peptides, they reveal very useful for better defining Cu(II) coordination sites in the native Aβ peptide. Four components were identified between pH 6 and 12, namely, components I, II, III and IV, in which the predominant Cu(II) equatorial sites are {-NH(2), CO (Asp1-Ala2), N(im) (His6), N(im) (His13 or His14)}, {-NH(2), N(-) (Asp1-Ala2), CO (Ala2-Glu3), N(im)}, {-NH(2), N(-) (Asp1-Ala2), N(-) (Ala2-Glu3), N(im)} and {-NH(2), N(-) (Asp1-Ala2), N(-) (Ala2-Glu3), N(-) (Glu3-Phe4)}, respectively, in line with classical pH-induced deprotonation of the peptide backbone encountered in Cu(II) peptidic complexes formation. The structure proposed for component II is discussed with respect to another coordination model reported in the literature, that is, {CO (Ala2-Glu3), 3 N(im)}. Cu(II) binding to the H6R-Aβ and D7N-Aβ peptides, where the familial H6R and D7N mutations have been linked to early onset of AD, has also been investigated. In case of the H6R mutation, some different structural features (compared to those encountered in the native [Cu(II)(Aβ)] species) have been evidenced and are anticipated to be important for the aggregating properties of the H6R-Aβ peptide in presence of Cu(II).  相似文献   

15.
A three-dimensional homology model of the human histamine H 4 receptor was developed to investigate the binding mode of a series of structurally diverse H 4-agonists, i.e. histamine, clozapine, and the recently described selective, nonimidazole agonist VUF 8430. Mutagenesis studies and docking of these ligands in a rhodopsin-based homology model revealed two essential points of interactions in the binding pocket, i.e. Asp3.32 and Glu5.46 (Ballesteros-Weinstein numbering system). It is postulated that Asp3.32 interacts in its anionic state, whereas Glu5.46 interacts in its neutral form. The hypothesis was tested with the point mutations D3.32N and E5.46Q. For the D3.32N no binding affinity toward any of the ligands could be detected. This is in sharp contrast to the E5.46Q mutant, which discriminates between various ligands. The affinity of histamine-like ligands was decreased approximately a 1000-fold, whereas the affinity of all other ligands remained virtually unchanged. The proposed model for agonist binding as well as ab initio calculations for histamine and VUF 8430 explain the observed differences in binding to the H 4R mutants. These studies provide a molecular understanding for the action of a variety of H 4 receptor-ligands. The resulting H 4 receptor model will be the basis for the development of new H 4 receptor-ligands.  相似文献   

16.
In the D85N mutant of the protein bacteriorhodopsin (BR), the Schiff base, by which the retinal chromophore is bound to the protein, exhibits an abnormally low proton affinity (pKa approximately 8.9). Recent experiments on thin films of this protein have shown that this causes the protonation state of the Schiff base, and thus the visible absorption spectrum, to be sensitive to external electric fields. In this paper, we explore the dependence of this effect on parameters such as pH, humidity, and film thickness. The results of these experiments point to the importance of water molecules bound in the acceptor part of the proton channel as sources and donors in field-induced proton-transfer reactions. We describe additional results obtained with the D85,96N mutant, which also exhibits a low Schiff-base pK. The similar behavior of the two mutants under applied electric fields at high pH implies that the residue Asp-96 plays no role in field-induced Schiff-base protonation.  相似文献   

17.
As it is known that the understanding of the basic properties of the enzyme/inhibitor complex leads directly to enhancing the capability in drug designing and drug discovery. Molecular dynamics simulations have been performed to examine detailed information on the structure and dynamical properties of the HIV-1 PR complexed with saquinavir in the three protonated states, monoprotonates at Asp25 (Mono-25) and Asp25'(Mono-25') and diprotonate (Di-Pro) at both Asp25 and Asp25'. The obtained results support clinical data which reveal that Ile84 and Gly48 are two of the most frequent residues where mutation toward a protease inhibitor takes place. In contrast to the Ile84 mutation due to high displacement of Ile84 in the presence of saquinavir, source of the Gly48 mutation was observed to be due to the limited space in the HIV-1 PR pocket. The Gly48 was, on one side, found to form strong hydrogen bonds with saquinavir, while on the other side this residue was repelled by the hydrophobic Phe53 residue. In terms of inhibitor/enzyme binding, interactions between saquinavir and a catalytic triad of the HIV-1 PR were calculated using the ab initio method. The results show an order of the binding energy of Mono25相似文献   

18.
In the catalytic cycle of cytochrome P450cam, the hydroperoxo intermediate (Cpd 0) is formed by proton transfer from a reduced oxyheme complex (S5). This process is drastically slowed down when Asp251 is mutated to Asn (D251N). We report quantum mechanical/molecular mechanical (QM/MM) calculations that address this proton delivery in the doublet state through a hydrogen-bond network in the Asp251 channel, both for the wild-type enzyme and the D251N mutant, using four different active-site models. For the wild-type, we find a facile concerted mechanism for proton transfer from protonated Asp251 via Wat901 and Thr252 to the FeOO moiety, with a barrier of about 1 kcal/mol and a high exothermicity of more than 20 kcal/mol. In the D251N mutant with a neutral Asn251 residue, the proton transfer is almost thermoneutral or slightly exothermic in the three models considered. It is still very facile when the Asn251 residue adopts a conformation analogous to Asp251 in the wild-type enzyme, but the barrier increases significantly when the Asn251 side chain flips (as indicated by classical molecular dynamics simulations). This flip disrupts the hydrogen-bond network and hence the proton-transfer pathway, which causes a longer lifetime of S5 in the D251N mutant (consistent with experimental observations). The entry of an additional water molecule into the active site of D251N with flipped Asn251 regenerates the hydrogen-bond network and provides a viable mechanism for proton delivery in the mutant, with a moderate barrier of about 7 kcal/mol.  相似文献   

19.
Phytochrome photoreceptors operate via photoisomerization of a bound bilin chromophore. Their typical architecture consists of GAF, PAS and PHY domains. Knotless phytochromes lack the PAS domain, while retaining photoconversion abilities, with some being able to photoconvert with just the GAF domain. Therefore, we investigated the ultrafast photoisomerization of the Pr state of a knotless phytochrome to reveal the effect of the PHY domain and its “tongue” region on the transduction of the light signal. We show that the PHY domain does not affect the initial conformational dynamics of the chromophore. However, it significantly accelerates the consecutively induced reorganizational dynamics of the protein, necessary for the progression of the photoisomerization. Consequently, the PHY domain keeps the bilin and its binding pocket in a more reactive conformation, which decreases the extent of protein reorganization required for the chromophore isomerization. Thereby, less energy is lost along nonproductive reaction pathways, resulting in increased efficiency.  相似文献   

20.
Studies were performed to determine the effect of pH on chromium (Cr) binding by native, esterified, and hydrolyzed saltbush (Atriplex canescens) biomass. In addition, X-ray absorption spectroscopy studies were performed to determine the oxidation state of Cr atoms bound to the biomass. The amounts of Cr adsorbed by saltbush biomass were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). For Cr(III), the results showed that the percentages bound by native stems, leaves, and flowers at pH 4.0 were 98%, 97%, and 91%, respectively. On the other hand, the Cr(VI) binding by the three tissues of the native and hydrolyzed saltbush biomass decreased as pH increased. At pH 2.0 the stems, leaves, and flowers of native biomass bound 31%, 49%, and 46%, of Cr(VI), respectively. The results of the XAS experiments showed that Cr(VI) was reduced in some extend to Cr(III) by saltbush biomass at both pH 2.0 and pH 5.0. The XANES analysis of the Cr(III) reaction with the saltbush biomass parts showed an octahedral arrangement of oxygen atoms around the central Cr(III) atom. The EXAFS studies of saltbush plant samples confirmed these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号