首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heterogeneous phase reaction of [Ru(η2-RL)(PPh3)2(CO)Cl] (1) with the sodium salts of dimethyl dithiocarbamate (MeDTC), diethyl dithiocarbamate (EtDTC), and pyrrolidine dithiocarbamate (PyrDTC) ligands led to the isolation of bright-yellow crystalline solids of type [Ru(η1-RL)(PPh3)2(CO)(R′DTC)] (2(R)(R′DTC)) where η2-RL is C6H2O-2-CHNHC6H4R(p)-3-Me-5, η1-RL is C6H2OH-2-CHNC6H4R(p)-3-Me-5, R is Me, OMe, Cl, and R = Me, Et, Pyr. The binding of dithiocarbamate ligand is accompanied by the dissociation of Ru-O and Ru-Cl bonds along with concomitant prototropic shift from iminium–phenolato to imine–phenol motif. The reaction also involves a sterically controlled change in rotational conformation in going to the products. The X-ray crystal structure of [Ru(η1-ClL)(PPh3)2(CO)(EtDTC)] (2(Cl)(EtDTC)) has been described here. An account of different spectral (UV–Vis, IR, NMR) and electrochemical data of the complexes are also asserted. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) analyses were performed to scrutinize the electronic structure and the absorption spectra of the complexes. One of the dithiocarbamato complexes has also been found to have in vitro antiproliferative properties against MDA-MB-231 breast cancer cell line which was determined by MTT assay. Cell death occurs mainly through apoptosis and flow cytometric analysis indicates that the complex induces cell cycle arrest in the sub G0/G1 phase.  相似文献   

2.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

3.
The reaction of Ru(RL1)(PPh3)2(CO)Cl,1, with quinolin-8-ol (HQ) has afforded complexes of the type [Ru(RL2)(PPh3)2(CO)(Q)],3, in excellent yield (RL1 is C6H2O-2-CHNHC6H4R(p)-3-Me-5, RL2 is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is Me, OMe, Cl). In this process, quinolin-8-olato (Q) undergoes five-membered chelation, the iminium-phenolato function tautomerizing to the imine-phenol function. In dichloromethane solution,3 displays a quasireversible3 +/3 couple near 0·50 V vs SCE (3 + is the ruthenium (III) analogue of3). Coulometrically generated solutions of3 + display a strong absorption near 395 nm associated with a shoulder near 475 nm and rhombic EPR spectra withg values near 2·55, 2·13, 1·89. Solutions of3 absorb near 415 nm and emit near 510 nm at 298 K and 585 nm at 77 K. The fluorescence is believed to originate from the3MLCT state  相似文献   

4.
Treatment of [RuCl2(PPh3)3] with 2 equiv. HimtMPh (HimtMPh?=?1-(4-methyl-phenyl)-imidazole-2-thione) in the presence of MeONa afforded cis-[Ru(κ 2-S,N-imtMPh)2(PPh3)2] (1), while interaction of [RuCl2(PPh3)3] and 2 equiv. HimtMPh in tetrahydrofuran (THF) without base gave [RuCl2(κ 1-S-HimtMPh)2(PPh3)2] (2). Treatment of [RuHCl(CO)(PPh3)3] with 1 equiv. HimtMPh in THF gave [RuHCl(κ 1-S-HimtMPh)(CO)(PPh3)2] (3), whereas reaction of [RuHCl(CO)(PPh3)3] with 1 equiv. of the deprotonated [imtMPh]? or [imtNPh]? (imtNPh?=?1-(4-nitro-phenyl)-2-mercaptoimidazolyl) gave [RuH(κ 2-S,N-imtRPh)(CO)(PPh3)2] (R?=?M 4a, R?=?N 4b). The ruthenium hydride complexes 4a and 4b easily convert to their corresponding ruthenium chloride complexes [RuCl(κ 2-S,N-imtMPh)(CO)(PPh3)2] (5a) and [RuCl(κ 2-S,N-imtNPh)(CO)(PPh3)2] (5b), respectively, in refluxing CHCl3 by chloride substitution of the RuH. Photolysis of 5a in CHCl3 at room temperature afforded an oxidized product [RuCl2(κ 2-S,N-imtMPh)(PPh3)2] (6). Reaction of 6 with excess [imtMPh]? afforded 1. The molecular structures of 1·EtOH, 3·C6H14, 4b·0.25CH3COCH3, and 6·2CH2Cl2 have been determined by single-crystal X-ray crystallography.  相似文献   

5.
Reactions of copper(I) halides with triphenyl phosphine in acetonitrile followed by the addition of salicylaldehyde N-ethylthiosemicarbazone {(2-OH–C6H4)(H)C2=N3–N2H–C1(=S)N1HEt, H2stsc-NEt} in chloroform in 1?:?2?:?1 (Cl) or 1?:?1?:?1 (Br, I) molar ratios yield mononuclear, [CuCl(η 1-S-H2stsc-NHEt)(PPh3)2] (1) and sulfur-bridged dinuclear, [Cu2X2(μ-S-H2stsc-NEt)2(PPh3)2] (X?=?Br, 4; I, 5) complexes. Similarly, reaction of silver halides (Cl, Br) with H2stsc-NEt in acetonitrile followed by the addition of PPh3 to the solid that formed (1?:?1?:?2 molar ratio), yielding mononuclear complexes, [AgX(η 1-S-H2stsc-NHEt)(PPh3)2] (Cl, 2; Br, 3). All these complexes are characterized with analytical data, IR, and NMR spectroscopy and single-crystal X-ray crystallography. The ligand favored η 1-S bonding in 1, 2, and 3, and μ-S bonding in 4 and 5. Cu?···?Cu contacts were 3.063?Å. The complexes form 1-D or 2-D H-bonded networks, entrapping solvent in some cases.  相似文献   

6.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of multifunctional triaminoxime have been synthesized and characterized by elemental analyses, IR, UV–Vis spectra, magnetic moments, 1H- and 13C-NMR spectra for ligand and its Ni(II) complex, mass spectra, molar conductances, thermal analyses (DTA, DTG and TG) and ESR measurements. The IR spectral data show that the ligand is bi-basic or tri-basic tetradentate towards the metals. Molar conductances in DMF indicate that the complexes are non-electrolytes. The ESR spectra of solid copper(II) complexes [(HL)(Cu)2(Cl)2] · 2H2O (2) and [(L)(Cu)3(OH)3(H2O)6] · 7H2O (6) show axial symmetry of a d x²???y 2 ground state; however, [(HL)(Co)] (4) shows an axial type with d Z 2 ground state and manganese(II) complex [(L)(Mn)3(OH)3(H2O)6] · 4H2O (10) shows an isotropic type. The biological activity of the ligand and its metal complexes are discussed.  相似文献   

7.
    
Reactions of the cyanide complexes of the type [(Ind)Ru(PPh3)2CN] (1), [(Ind)Ru(dppe)CN] (2), [(Cp)Ru(PPh3)2CN] (3), with the corresponding chloro complexes [(Ind)Ru(PPh3)2Cl] (4), [(Ind)Ru(dppe)Cl] (5), [(Cp)Ru(PPh3)2Cl] (6), in the presence of NH4PF6 salt give homometallic cyano-bridged compounds of the type [(Ind)(PPh3)2Ru-CN-Ru(PPh3)2(Cp)]PF6 (7), [(Ind)(PPh3)2Ru-CN-Ru(PPh3)2(Ind)] PF6 where Ind = indenyl, η5-C9H7, (8), [(Cp)(PPh3)2Ru-CN-Ru(dppe)(Ind)]PF6, dppe = (Ph2PCH2CH2PPh2) (9), [(Ind(dppe)Ru-CN-Ru(PPh3)2(Ind)PF6 (10) and [(Ind)(dppe)Ru-CN-Ru(PPh3)2(Cp)]PF6 (11) respectively. Reaction of complex3 with [(p-cymene)RuCl2]2 dimer gave a mixed dimeric complex [(Cp)Ru(PPh3)2-CN-RuCl2(p-cymene)] (12). All these complexes have been characterized by IR,1H,13C and31P NMR spectroscopy and C, H, N analyses.  相似文献   

8.
Solvothermal synthesis method has been successfully introduced into the diphosphine carborane system, and two new nickel complexes containing nido-carborane diphosphine ligand [7,8-(PPh2)2-7,8-C2B9H10] with the formula [Ni2(μ-Cl)(μ-OOPPh2){7,8-(PPh2)2-7,8-C2B9H10}2]·CH2Cl2 (1) and [H3O][NiBr2] {7,8-(PPh2)2-7,8-C2B9H10}·C6H6 (2) were obtained by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with NiCl2·6H2O or NiBr2·6H2O in CH2Cl2 under the solvothermal condition. Both of the two complexes have been characterized by the elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and single crystal X-ray diffraction. The X-ray structure analysis for these two complexes reveals the nido-nature of the carborane diphosphine ligand, indicating that the solvothermal synthesis is an efficient method for the degradation of the closo-carborane diphosphine ligand.  相似文献   

9.
Reactivity of the ruthenium complexes [Ru(κ3-tptz)(PPh3)Cl2] (1) and [Ru(κ3-tpy)(PPh3)Cl2] (2) [tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine; tpy = 2,2′:6′,2″-terpyridine] with several α-amino acids [glycine (gly); leucine (leu); isoleucine (isoleu); valine (val); tyrosine (tyr); proline (pro) and phenylalanine (phe)] have been investigated. Cationic complexes with the general formulations [Ru(κ3-L)(κ2-L″)(PPh3)]+ (L = tptz or tpy; L″ = gly, leu, isoleu, val, tyr, pro, and phe] have been isolated as tetrafluoroborate salts. The resulting complexes have been thoroughly characterized by analytical, spectral and electrochemical studies. Molecular structures of the representative complexes [Ru(κ3-tptz)(val)(PPh3)]BF4 (6), [Ru(κ3-tpy)(leu)(PPh3)]BF4 (10) and [Ru(κ3-tpy)(tyr)(PPh3)]BF4 (13) have been determined crystallographically. The complexes [Ru(κ3-tptz)(leu)(PPh3)]BF4 (4), [Ru(κ3-tptz)(val)(PPh3)]BF4 (6), [Ru(κ3-tpy)(leu)(PPh3)]BF4 (10) [Ru(κ3-tpy)(tyr)(PPh3)] BF4·3H2O (13) exhibited DNA binding behavior and acted as mild Topo II inhibitors (10-40%). The complexes also inhibited heme polymerase activity of the malarial parasite Plasmodium yoelii lysate.  相似文献   

10.
《印度化学会志》2021,98(4):100048
The reaction of Ru(κ2C,O-RL)(PPh3)2(CO)Cl, 1 with excess sodium salt of pyridine-2-carboxylic acid (Napic) furnishes the complexes of the type Ru(κ1C-RL)(PPh3)2(CO) (pic), 2(R) with excellent yield (κ2C,O-RL is C6H2O-2-CHNHC6H4R(p)-3-Me-5, κ1C-RL is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is Me, OMe, Cl). The chelation of pic is attended with the cleavage of Ru–O and Ru–Cl bonds and iminium–phenolato→imine–phenol prototropic shift. The 1 ​→ ​2 conversion is irreversible and the type 2 species are thermodynamically more stable than the acetate, nitrite and nitrate complexes of 1. The spectral (UV–vis, IR, 1H NMR) and electrochemical data of the complexes are reported. In dichloromethane solution the complexes display one quasi–reversible RuIII/RuII cyclic voltammetric response with E1/2 in the range 0.72–0.80 ​V vs. Ag/AgCl. The crystal and molecular structure of Ru(κ1C-MeOL)(PPh3)2(CO)(pic)∙CH3CN is reported which revealed distorted octahedral RuC2P2NO coordination sphere. The pairs (P, P), (C, O) and (C, N) define the three trans directions. The electronic structures of the complexes are also scrutinized by density functional theory (DFT) and time–dependent density functional theory (TD–DFT) calculations.  相似文献   

11.
Two complexes, [Cu2(TFSA)(2,2′-bpy)4]?·?TFSA?·?8H2O (1) and {[Cu(4,4′-bpy)(H2O)2]?·?TFSA?·?6H2O} n (2) (H2TFSA?=?tetrafluorosuccinic acid, 2,2′-bpy?=?2,2′-bipyridine, and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized and structurally characterized by X-ray structural analyses. Complex 1 is a binuclear molecule bridged by TFSA ligands; 2 is a 1-D chain bridged by 4,4′-bpy ligands. The asymmetric units of the two complexes are composed of cationic complexes [Cu2(TFSA)(2,2′-bpy)4]2+ (1) and [Cu(4,4′-bpy)(H2O)2]2+ (2), free TFSA anion, and independent crystallization water molecules. A unique 2-D hybrid water–TFSA anionic layer by linkage of {[(H2O)8(TFSA)]2?} n fragments consisting of 1-D T6(0)A2 water tape and TFSA anionic units by hydrogen bonds in 1 was observed. Unique 2-D hybrid water–TFSA anionic layer generated by the linkage of {[(H2O)6(TFSA)]2?} n fragments consisting of cyclic water tetramers with appended water molecules and TFSA anionic units, and 1-D metal–water tape [Cu–H2O?···?(H2O)6?···?H2O?] n in 2 were found. 3-D supramolecular networks of the two complexes consist of cationic complexes and water–TFSA anionic assemblies connected by hydrogen bonds.  相似文献   

12.
Reactions between [Ru(thf)(PPh3)2(η-C5H5)]+ and lithium acetylides have given further examples of substituted ethynylruthenium complexes that are useful precursors of allenylidene and cumulenylidene derivatives. From Li2C4, mono- and bi-nuclear ruthenium complexes were obtained: single-crystal X-ray studies have characterised two rotamers of {Ru(PPh3)2(η-C5H5)}2(μ-C4), which differ in the relative cis and trans orientations of the RuLn groups. Protonation of Ru(CCCCH)(PPh3)2(η-C5H5) afforded the butatrienylidene cation [Ru(C=C=C=CH2)(PPh3)2(η-C5H5)]+, which reacted readily with atmospheric moisture to give the acetylethynyl complex Ru{CCC(O)Me}(PPh3)2(η-C5H5), also fully characterised by an X-ray structural study.  相似文献   

13.
Crystallization of [Cu(β-diketonate)(PPh3)2] (1a, β-diketonate=1-ferrocenyl-butane-1,3-dionato (= fb); 1b,?=?1,3-diferrocenyl-propane-1,3-dionato (= dfp)) from ethanol, layered with a mixture of pentane/diethyl ether of ratio 1?:?1 (v/v) in air, afforded Cu(II)-oxo clusters [Cu10(fb)8(O)4(tmdd)2]·1.5Et2O (2) and [Cu7(dfp)6(O)2(OH)2(tmdd)]·2Et2O (3), respectively, in minor yield (tmdd?=?1κ 2 C,3κ 2 C-tetramethyldisiloxane-1,3-diolato). These clusters were obtained in somewhat better yield when HOSiMe2OSiMe2OH was added to the crystallization mixtures. The molecular structures of 2 and 3 in the solid state are reported.  相似文献   

14.
Six complexes, [VO(L1-H)2]?·?5H2O (1), [VO(OH)(L2,3?H)(H2O)]?·?H2O (2,3), [VO(OH)(L4,5?H)(H2O)]?·?H2O (4,5), [VO(OH)(L6?H)(H2O)]?·?H2O (6), were prepared by reacting different derivatives of 5-phenylazo-6-aminouracil ligands with VOSO4?·?5H2O. The infrared and 1H NMR spectra of the complexes have been assigned. Thermogravimetric analyses (TG, DTG) were also carried out. The data agree quite well with the proposed structures and show that the complexes were finally decomposed to the corresponding divanadium pentoxide. The ligands and their vanadyl complexes were screened for antimicrobial activities by the agar-well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values for 14 and 6 were calculated at 30°C for 24–48?h. The activity data show that the complexes are more potent antimicrobials than the parent ligands.  相似文献   

15.
The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ‐butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κOO′)di‐μ‐hydroxido‐bis[(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κO)(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl phosphato‐κO)chromium](CrCr) heptane disolvate or {Cr22‐OH)22‐PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κOO′]2[PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2[HOPO(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted ( 1 )·2(heptane), [μ‐bis(2,6‐diisopropylphenyl) phosphato‐1κO:2κO′]bis[bis(2,6‐diisopropylphenyl) phosphato]‐1κO,2κO‐chlorido‐2κCl‐triethanol‐1κ2O,2κO‐di‐μ‐ethanolato‐1κ2O:2κ2O‐dichromium(CrCr) ethanol monosolvate or {Cr22‐OEt)22‐PO2(O‐2,6‐iPr2‐C6H3)2‐κOO′][PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted ( 2 )·EtOH, and di‐μ‐ethanolato‐1κ2O:2κ2O‐bis{[bis(2,6‐diisopropylphenyl) hydrogen phosphato‐κO][bis(2,6‐diisopropylphenyl) phosphato‐κO]chlorido(ethanol‐κO)chromium}(CrCr) benzene disolvate or {Cr22‐OEt)2[PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2[HOPO(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted ( 3 )·2C6H6. Complexes ( 1 )–( 3 ) have been synthesized by an exchange reaction between the in‐situ‐generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of ( 1 ) from heptane, ( 2 ) from ethanol and ( 3 ) from an ethanol/benzene mixture allowed us to obtain crystals of ( 1 )·2(heptane), ( 2 )·EtOH and ( 3 )·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in ( 1 ), Cr2PO4 in ( 2 ) and Cr2O2 in ( 3 ), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2‐OH in ( 1 ) or μ2‐OEt in ( 2 ) and ( 3 ). The organophosphate ligands demonstrate terminal κO coordination modes in ( 1 )–( 3 ) and bridging μ2‐κOO′ coordination modes in ( 1 ) and ( 2 ). All the complexes exhibit hydrogen bonding: two intramolecular Ophos…H—Ophos interactions in ( 1 ) and ( 3 ) form two {H[PO2(OR)2]2} associates; two intramolecular Cl…H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in ( 3 ); two intramolecular Ophos…H—OEt interactions and two O…H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in ( 2 )·EtOH. The presence of both basic ligands (OH? or OEt?) and acidic [H(phosphate)2]? associates at the same metal centres in ( 1 ) and ( 3 ) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short‐chain branching. The formation of a small amount of α‐olefins has been detected in this reaction.  相似文献   

16.
The crystal structure of the title compound, catena-poly[bis[aqua(18-crown-6)­potassium] di­aqua(18-crown-6)­potassium [[tetra-μ-benzoato-2:3κ8O:O′-μ-cyano-1:2κ2C:N-tetra­cyano-1κC-irondirhodium(RhRh)]-μ-cyano-1κC:3′κN] octahydrate], [K(18-crown-6)(H2O)]2[K(18-crown-6)(H2O)2]­[FeRh2(C7H5O2)4(CN)6]·8H2O, where (18-crown-6) is 1,4,7,10,13,16-hexaoxa­cyclo­octa­decane (C12H24O6), has been determined. Ferric cyanides connect the dirhodium units to form a one-dimensional chain compound. [K(18-crown-6-ether)(H2O)2] cations (with inversion symmetry) and [K(18-crown-6-ether)(H2O)] cations (in general positions) are located between the chains.  相似文献   

17.
The syntheses of cationic ruthenium(II) complexes [Ru(Me2-bpy)(PPh3)2RR?][PF6]x {Me2-bpy = 4,4?-dimethyl-2,2?-bipyridine, (3) R = Cl, R? = N≡CMe, x = 1, (4) R = Cl, R? = N≡CPh, x = 1, (5) R = R? = N≡CMe, x = 2} and [Ru(Me2-bpy)(κ2-dppf)RR?][PF6]x {dppf = 1,1?-bis(diphenylphosphino)ferrocene, (6) R = Cl, R? = N≡CMe, x = 1, (7) R = Cl, R? = N≡CPh, x = 1, (8) R = R? = N≡CMe, x = 2} are reported, together with their structural confirmation by NMR (31P, 1H) and IR spectroscopy and elemental analysis, and, in the case of trans-[Ru(Me2-bpy)(PPh3)2(N≡CCH3)Cl][PF6] (3), by X-ray crystallography. Electronic absorption and emission spectra of the complexes reveal that all complexes except 4 and 6 are emissive in the range 370–400 nm with 8 exhibiting an emission in the blue. Cyclic voltammetry studies of 3–8 show reversible or quasi-reversible redox processes at ca. 1 V, assigned to the Ru(II/III) couple.  相似文献   

18.
Three supramolecular complexes, [VO(phen)(C2O4)(H2O)]·CH3OH (1) [(VO)2(u2-C2O4)(C2O4)2(H2O)2]·L·H2O (2), and [(4,4′-bipyH2)0.5]+[VO2(2,6-dipic)]?·2H2O (3) (phen?=?1,10-phenanthroline 4,4′-bipy?=?4,4′-bipyridine, 2,6-dipic?=?2,6-pyridinedicarboxylic, L?=?1,4-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)benzene), have been prepared and characterized by elemental analysis, IR, and UV–vis spectroscopy and single-crystal diffraction analysis. Structural analysis shows that the three complexes all contain carboxylate and V=O moiety; vanadium of 1 and 2 are six coordinate with distorted octahedral geometry with N2O4 and O6 donor sets, respectively, while 3 is five coordinate with distorted trigonal bipyramidal geometry with a NO4 donor set. The complexes exhibit catalytic bromination activity in the single-pot reaction for the conversion of phenol red to bromophenol blue in H2O–DMF at 30?±?0.5?C with pH 5.8, indicating that they can be considered as functional model vanadium-dependent haloperoxidases. In addition, electrochemical behaviors are also studied.  相似文献   

19.
Nickel(II) carboxylates [Ni(CH3(CH2)14COO)2(H2O)2] (1) and [Ni(C6H5COO)2(H2O)2] (2) were obtained from reactions of NiCl2·6H2O with CH3(CH2)14COONa and C6H5COONa, respectively. Complex 1 reacted with pyridine (pyr) to form [Ni(CH3(CH2)14COO)2(pyr)2(H2O)2] (3) and [Ni2(μ2-H2O)(CH3(CH2)14COO)4(pyr)4] (4) in the same reaction mixture, and reacted with cyclam to form an ionic complex, [Ni(CH3(CH2)14COO)(cyclam)(H2O)]CH3(CH2)14COO·4H2O (5). In contrast, 2 reacted with cyclam to form [Ni(C6H5COO)2(cyclam)] (6). Finally, 6 reacted with p-(hexadecyloxy)pyridine (L) to form an ionic complex, [Ni(cyclam)(L)2](C6H5COO)2 (7). Complexes 36 were single crystals. All complexes have octahedral Ni(II) center(s) and were magnetic. Complexes with cyclam as co-ligand were more thermally stable than those with pyridine and its derivative, L. Complexes 3 and 4 were mesomorphic after partial loss of water and/or pyridine ligands on heating. The ionic complexes 5 and 7 were not mesomorphic, but showed good thermoelectrical behavior with negative Se values in CHCl3 (?0.28 mV K?1 for 5; -0.39 mV K?1 for 7) and positive Se values in C2H5OH (+0.25 mV K?1 for 5; +0.20 mV K?1 for 7).  相似文献   

20.
Four Ru(II) complexes with tridentate ligands viz. (4-hydroxy-N′-(pyridin-2-yl-ethylene) benzohydrazide [Ru(L1)(PPh3)2(Cl)] (1), N′-(pyridin-2-yl-methylene) nicotinohydrazide [Ru(L2)(PPh3)2(Cl)] (2), N′-(1H-imidazol-2-yl-methylene)-4-hydroxybenzohydrazide [Ru(L3)(PPh3)2(Cl)] (3), and N′-(1H-imidazol-2-yl-methylene) nicotinohydrazide [Ru(L4)(PPh3)2(Cl)] (4) have been synthesized and characterized. The methoxy-derivative of L3H (abbreviated as L3H*) exists in E configuration with torsional angle of 179.4° around C7-N8-N9-C10 linkage. Single crystal structures of acetonitrile coordinated ruthenium complexes of 1 and 3 having compositins as [Ru(L1)(PPh3)2(CH3CN)]Cl (1a) and [Ru(L3)(PPh3)2(CH3CN)]Cl (3a) revealed coordination of tridentate ligands with significantly distorted octahedral geometry constructed by imine nitrogen, heterocyclic nitrogen, and enolate amide oxygen, forming a cis-planar ring with trans-placement of two PPh3 groups and a coordinated acetonitrile. Ligands (L1H-L4H) and their ruthenium complexes (1–4) are characterized by 1H, 13C, 31P NMR, and IR spectral analysis. Ru(II) complexes have reversible to quasi-reversible redox behavior having Ru(II)/Ru(III) oxidation potentials in the range of 0.40–0.71 V. The DNA binding constants determined by absorption spectral titrations with Herring Sperm DNA (HS-DNA) reveal that L4H and 1 interact more strongly than other ligands and Ru(II) complexes. Complexes 1–3 exhibit DNA cleaving activity possibly due to strong electrostatic interactions while 4 displays intercalation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号