首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of [RuCl2(PPh3)3] with 2 equiv. HimtMPh (HimtMPh?=?1-(4-methyl-phenyl)-imidazole-2-thione) in the presence of MeONa afforded cis-[Ru(κ 2-S,N-imtMPh)2(PPh3)2] (1), while interaction of [RuCl2(PPh3)3] and 2 equiv. HimtMPh in tetrahydrofuran (THF) without base gave [RuCl2(κ 1-S-HimtMPh)2(PPh3)2] (2). Treatment of [RuHCl(CO)(PPh3)3] with 1 equiv. HimtMPh in THF gave [RuHCl(κ 1-S-HimtMPh)(CO)(PPh3)2] (3), whereas reaction of [RuHCl(CO)(PPh3)3] with 1 equiv. of the deprotonated [imtMPh]? or [imtNPh]? (imtNPh?=?1-(4-nitro-phenyl)-2-mercaptoimidazolyl) gave [RuH(κ 2-S,N-imtRPh)(CO)(PPh3)2] (R?=?M 4a, R?=?N 4b). The ruthenium hydride complexes 4a and 4b easily convert to their corresponding ruthenium chloride complexes [RuCl(κ 2-S,N-imtMPh)(CO)(PPh3)2] (5a) and [RuCl(κ 2-S,N-imtNPh)(CO)(PPh3)2] (5b), respectively, in refluxing CHCl3 by chloride substitution of the RuH. Photolysis of 5a in CHCl3 at room temperature afforded an oxidized product [RuCl2(κ 2-S,N-imtMPh)(PPh3)2] (6). Reaction of 6 with excess [imtMPh]? afforded 1. The molecular structures of 1·EtOH, 3·C6H14, 4b·0.25CH3COCH3, and 6·2CH2Cl2 have been determined by single-crystal X-ray crystallography.  相似文献   

2.
Treatment of [Ru(PPh3)3Cl2] with one equivalent of tridentate Schiff base 2-[(2-dimethylamino-ethylimino)-methyl]-phenol (HL) in the presence of triethylamine afforded a ruthenium(III) complex [RuCl3(κ2-N,N-NH2CH2CH2NMe2)(PPh3)] as a result of decomposition of HL. Interaction of HL and one equivalent of [RuHCl(CO)(PPh3)3], [Ru(CO)2Cl2] or [Ru(tht)4Cl2] (tht = tetrahydrothiophene) under different conditions led to isolation of the corresponding ruthenium(II) complexes [RuCl(κ3-N,N,O-L)(CO)(PPh3)] (2), [RuCl(κ3-N,N,O-L)(CO)2] (3), and a ruthenium(III) complex [RuCl2(κ3-N,N,O-L)(tht)] (4), respectively. Molecular structures of 1·CH2Cl2, 2·CH2Cl2, 3 and 4 have been determined by single-crystal X-ray diffraction.  相似文献   

3.
Ten new complexes, [Cu2(L1)(NO3)2]·2H2O (1), [Cu4(L1)2]·4ClO4·H2O (2), [Cu2(L1)(H2O)2]·(adipate) (3), [Cu6(L1)2(m-bdc)4]·2DMF·5H2O (4), [Cu2(L1)(Hbtc)]·5H2O (5), [Cu2(L1)(H2O)2]·(ntc)·3H2O (6), [Co2(L2)]·[Co(MeOH)4(H2O)2] (7), [Co3(L2)(EtOH)(H2O)] (8), [Ni6(L2)2(H2O)4]·H2O (9) and [Zn4(L2)(OAc)2]·0.5H2O (10), have been synthesized. 1 displays a [Cu2(L1)(NO3)2] monomolecular structure. 2 shows a supramolecular chain including [Cu2L1]2+. In 3, two Cu(II) ions are connected by L1 to form a [Cu2(L1)(H2O)2]2+ cation. In 4, the m-bdc anions bridge Cu(II) ions and L1 anions to form a layer. Both 5 and 6 display 3-D supramolecular structures. 7 consists of both [Co2L2]2? and [Co(MeOH)4(H2O)2]2+ units. 8 and 9 show infinite chain structures. In 10, Zn(II) dimers are linked by L2 to generate a 3-D framework. The magnetic properties for 4 and 8 and the luminescent property for 10 have been studied.  相似文献   

4.
Reactions of copper(I) halides with triphenyl phosphine in acetonitrile followed by the addition of salicylaldehyde N-ethylthiosemicarbazone {(2-OH–C6H4)(H)C2=N3–N2H–C1(=S)N1HEt, H2stsc-NEt} in chloroform in 1?:?2?:?1 (Cl) or 1?:?1?:?1 (Br, I) molar ratios yield mononuclear, [CuCl(η 1-S-H2stsc-NHEt)(PPh3)2] (1) and sulfur-bridged dinuclear, [Cu2X2(μ-S-H2stsc-NEt)2(PPh3)2] (X?=?Br, 4; I, 5) complexes. Similarly, reaction of silver halides (Cl, Br) with H2stsc-NEt in acetonitrile followed by the addition of PPh3 to the solid that formed (1?:?1?:?2 molar ratio), yielding mononuclear complexes, [AgX(η 1-S-H2stsc-NHEt)(PPh3)2] (Cl, 2; Br, 3). All these complexes are characterized with analytical data, IR, and NMR spectroscopy and single-crystal X-ray crystallography. The ligand favored η 1-S bonding in 1, 2, and 3, and μ-S bonding in 4 and 5. Cu?···?Cu contacts were 3.063?Å. The complexes form 1-D or 2-D H-bonded networks, entrapping solvent in some cases.  相似文献   

5.

The complexes [MI2(CO)3(NCMe)2] (M=Mo or W) react in CH2Cl2 at room temperature with two equivalents of 4,4'-diphenylenecarbonitrile (dpc) to afford the new seven-coordinate complexes, [MI2(CO)3(4,4'-dpc-N)2] (1 and 2) in good yield. Equimolar quantities of [MI2(CO)3(NCMe)2] and PPh3 give [MI2(CO)3(NCMe)(PPh3)], which react in situ with 4,4'-dpc to yield the mono-4,4'-diphenylenecarbonitrile complexes, [MI2(CO)3(4,4'-dpc-N)(PPh3)] (3 and 4). Treatment of the bis(alkyne) complexes, [WI2(CO)(NCMe)(η 2-RC2R)2] (R=Me and Ph) with one equivalent of 4,4'-dpc in CH2Cl2 at room temperature affords the acetonitrile displaced products, [WI2(CO)(4,4'-dpc-N)(η 2-RC2R)2] (5 and 6). Reaction of equimolar quantities of [WI2(CO)(NCMe)(η 2-PhC2Ph)2] and 2 in CH2Cl2 at room temperature gives the 4,4'-dpc-bridged complex, [WI2(CO){WI2(CO)3(4,4'-dpc-N)(4,4'-dpc- N,N')}(η 2-PhC2Ph)2] (7) in good yield. Similarly, equimolar amounts of [WI2(CO)(NCMe)(η 2-RC2R)2] (R=Me and Ph) and (4) react in CH2Cl2 to afford the bimetallic complexes, [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(PPh3)}(η 2-RC2R)2] (8 and 9). The new bimetallic 4,4'-dpc-bridged alkyne complexes, [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-MeC2Me)2}(η 2-MeC2Me)2] [(10), [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-PhC2Ph)2}(η 2-PhC2Ph)2] (11) and [WI2(CO){WI2(CO)(4,4'-dpc-N,N')(η 2-MeC2Me)2}(η 2-PhC2Ph)2] (12) are also described.  相似文献   

6.
Four copper(II) complexes and one copper(I) complex with pyridine-containing pyridylalkylamide ligands N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (HLpz) and N-(2-(pyridin-2-yl)ethyl)pyrazine-2-carboxamide (HLpz?) were synthesized and characterized. The X-ray crystal structures of [Cu2(Lpz)2(4,4?-bipy)(OTf)2] (1, OTf?=?trifluoromethanesulfonate, 4,4?-bipy?=?4,4?-bipyridine) and [Cu(Lpz)(py)2]OTf·H2O (2, py?=?pyridine) revealed binuclear and mononuclear molecular species, respectively, while [Cu(Lpz)(μ2-1,1-N3)]n (3), [Cu(Lpz?)(μ2-1,3-N3)]n (4), and [Cu(HLpz)Cl]n (5) are coordination polymer 1-D chains in the solid state.  相似文献   

7.
Four Ru(II) complexes with tridentate ligands viz. (4-hydroxy-N′-(pyridin-2-yl-ethylene) benzohydrazide [Ru(L1)(PPh3)2(Cl)] (1), N′-(pyridin-2-yl-methylene) nicotinohydrazide [Ru(L2)(PPh3)2(Cl)] (2), N′-(1H-imidazol-2-yl-methylene)-4-hydroxybenzohydrazide [Ru(L3)(PPh3)2(Cl)] (3), and N′-(1H-imidazol-2-yl-methylene) nicotinohydrazide [Ru(L4)(PPh3)2(Cl)] (4) have been synthesized and characterized. The methoxy-derivative of L3H (abbreviated as L3H*) exists in E configuration with torsional angle of 179.4° around C7-N8-N9-C10 linkage. Single crystal structures of acetonitrile coordinated ruthenium complexes of 1 and 3 having compositins as [Ru(L1)(PPh3)2(CH3CN)]Cl (1a) and [Ru(L3)(PPh3)2(CH3CN)]Cl (3a) revealed coordination of tridentate ligands with significantly distorted octahedral geometry constructed by imine nitrogen, heterocyclic nitrogen, and enolate amide oxygen, forming a cis-planar ring with trans-placement of two PPh3 groups and a coordinated acetonitrile. Ligands (L1H-L4H) and their ruthenium complexes (1–4) are characterized by 1H, 13C, 31P NMR, and IR spectral analysis. Ru(II) complexes have reversible to quasi-reversible redox behavior having Ru(II)/Ru(III) oxidation potentials in the range of 0.40–0.71 V. The DNA binding constants determined by absorption spectral titrations with Herring Sperm DNA (HS-DNA) reveal that L4H and 1 interact more strongly than other ligands and Ru(II) complexes. Complexes 1–3 exhibit DNA cleaving activity possibly due to strong electrostatic interactions while 4 displays intercalation.  相似文献   

8.
[ReBr2(O)(OCH3)(PPh3)2] has been obtained in the reaction of [ReBr3O(PPh3)2] or [ReBr22-N2COPh-N′,O)(PPh3)2] with an excess of methanol. [ReBr2O(OMe)(PPh3)2] crystallizes in the triclinic space group P-1. The complex was characterized by infrared, UV-Vis, and 1H NMR spectra. The electronic structure of the obtained compound has been calculated using the DFT/TD–DFT method.  相似文献   

9.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

10.
Sulfur/oxygen-bridged incomplete cubane-type triphenylphosphine molybdenum and tungsten-clusters [Mo3S4Cl4(H2O)2(PPh3)3]·3THF (1A), [Mo3S4Cl4(H2O)2(PPh3)3]·2THF (2A), [Mo3OS3Cl4(H2O)2(PPh3)3]·2THF (1B), and [W3S4Cl4(H2O)2(PPh3)3]·2THF (1C) were prepared from the corresponding aqua clusters and PPh3 in THF/MeOH. On recrystallization from THF, procedures with and without addition of hexane to the solution gave 1A and 2A, respectively, while the procedures gave no effect on the formation of 1B and 1C. Crystallographic results obtained are as follows: 1A: monoclinic, P21/n, a=17.141(4) Å, b=22.579(5) Å, c=19.069(4) Å, =96.18(2)°, V=7337(3) Å3, Z=4, R(R w)=0.078(0.102); 1C: monoclinic, P2 1/c, a=12.635(1) Å, b=20.216(4) Å, c=27.815(3) Å, =96.16(1)°, V=7062(2) Å3, Z=4, R(R w)=0.071(0.083). If the phenyl groups are ignored, the molecule [Mo3S4Cl4(H2O)2(PPh3)3] in 2A has idealized CS symmetry with the mirror plane perpendicular to the plane determined by the metal atoms, while the molecule in 1A does not have the symmetry. The tungsten compound 1C is isomorphous with the molybdenum compound 2A. 31P NMR spectra of 1A, 2A, and 1C were obtained and compared with similar clusters with dmpe (1,2-bis(dimethylphosphino)ethane) ligands.  相似文献   

11.
《Polyhedron》2003,22(25-26):3307-3313
The [ReCl22-N2COPh–N,O)(PPh3)2] complex reacts with pyridine and pyrazole to give [ReCl2(N2COPh)(py)(PPh3)2] and [ReCl2(N2COPh)(C3N2H4)(PPh3)2], respectively. Two monoclinic polymers of [ReCl2(N2COPh)(C3N2H4)(PPh3)2] and [ReCl2(N2COPh)(py)(PPh3)2] have been characterized by IR, UV–Vis, 1H NMR, magnetic measurements and X-ray structure.  相似文献   

12.
Synthetic procedures are described that allow access to cis-[Mo2O5(cdhp)2]2?, cis-[W2O5(Hcdhp)2], trans-[OsO2(cdhp)2]2?, trans-[UO2(Hcdhp)2], [ReO(PPh3)(Hcdhp)2]X (X =?Cl, I), [ReO2(cdhp)2]?, [M(PPh3)2(cdhp)], [M(bpy)(cdhp)] (M(II) =?Pd, Pt), [Ru(YPh3)2(Hcdhp)2] (Y =?P, As), [Rh(Hcdhp)2Cl(H2O)], [Rh(PPh3)2(Hcdhp)2]ClO4 and [Ir(bpy)(cdhp)Cl2], where Hcdhp, cdhp are the deprotonated monoanion of 5-chloro-3-hydroxypyrid-2-one and dianion of 5-chloro-2,3-dihydroxypyridine, respectively. These complexes were characterized by their Raman, IR, 1H NMR, electronic and mass spectra, conductivity, magnetic and thermal measurements. H2cdhp, cis-K2[Mo2O5(cdhp)2], [Pd(bpy)(cdhp)] display a significant antineoplastic activity against Ehrlich ascites tumor cells (EAC).  相似文献   

13.
A series of new [NiX(S2P{O-c-Hex}2)(PPh3)](X = Cl, Br, I and NCS)(1)–(4) and [Ni(NCS)(S2P{OR}2)(PPh3)][R =n-Pr (5), i-Pr (6)] complexes has been synthesized and characterized by elemental analyses, f.i.r., i.r., u.v.–vis., 1H-, 13C{1H}- and 31P{1H}-n.m.r. spectra, magnetochemical and conductivity measurements. A single crystal X-ray analysis of [Ni(NCS)(S2P{O-n-Pr}2)(PPh3)](5) reveals the molecular structure of the complex and confirms a square-planar geometry around the central atom of nickel with the NCS anion coordinated via the nitrogen atom.  相似文献   

14.
Reaction of 1, 9‐dihydro‐purine‐6‐thione (puSH2) in presence of aqueous sodium hydroxide with PdCl2(PPh3)2 suspended in ethanol formed [Pd(κ2‐N7,S‐puS)(PPh3)2] ( 1 ). Similarly, complexes [Pd(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 2 – 4 ) {L‐L = dppm (m = 1) ( 2 ), dppp (m = 3) ( 3 ), dppb (m = 4) ( 4 )} were prepared using precursors the [PdCl2(L‐L)] {L‐L = Ph2P–(CH2)m–PPh2}. Reaction of puSH2 suspended in benzene with platinic acid, H2PtCl6, in ethanol in the presence of triethylamine followed by the addition of PPh3 yielded the complex [Pt(κ2‐N7,S‐puS)(PPh3)2] ( 5 ). Complexes [Pt(κ2‐N7,S‐puS)(κ2‐P, P‐L‐L)] ( 6 – 8 ) {L‐L = dppm ( 6 ), dppp ( 7 ), dppb ( 8 )} were prepared similarly. The 1, 9‐dihydro‐purine‐6‐thione acts as N7,S‐chelating dianion in compounds 1 – 8 . The reaction of copper(I) chloride [or copper(I) bromide] in acetonitrile with puSH2 and the addition of PPh3 in methanol yielded the same product, [Cu(κ2‐N7,S‐puSH)(PPh3)2] ( 9 ), in which the halogen atoms are removed by uninegative N, S‐chelating puSH anion. However, copper(I) iodide did not lose iodide and formed the tetrahedral complex, [CuI(κ1‐S‐puSH2)(PPh3)2] ( 10 ), in which the thio ligand is neutral. These complexes were characterized with the help of elemental analysis, NMR spectroscopy (1H, 31P), and single‐crystal X‐ray crystallography ( 3 , 7 , 8 , 9 , and 10 ).  相似文献   

15.
The redox reaction of bis(2-benzamidophenyl) disulfide (H2L-LH2) with [Pd(PPh3)4] in a 1:1 ratio gave mononuclear and dinuclear palladium(II) complexes with 2-benzamidobenzenethiolate (H2L), [Pd(H2L-S)2(PPh3)2] (1) and [Pd2(H2L-S)2 (μ-H2L-S)2(PPh3)2] (2). A similar reaction with [Pt(PPh3)4] produced only the corresponding mononuclear platinum(II) complex, [Pt(H2L-S)2(PPh3)2] (3). Treatment of these complexes with KOH led to the formation of cyclometallated palladium(II) and platinum(II) complexes, [Pd(L-C,N,S)(PPh3)] ([4]) and [Pt(L-C,N,S) (PPh3)] ([5]). The molecular structures of 2, 3 and [4] were determined by X-ray crystallography.  相似文献   

16.
Syntheses and Structures of the Phosphorus and Nitrogenbridged Transition Metal Complexes [Pd(NPhPPh2)(PPh3)]2, [Pd(NPhPPh2)2 · Li(thf)]2, [Pd(NPhPPh2)Cl · Li(thf)3]2, [M(NPhPPh2)(HNPhPPh2)]2 (M?Pd, Pt), [M{Ph2P(NPh)2}2] (M?Co, Ni), [Ni(PPh2){Ph2P(NPh)2}]2 and [Ni2(PPh2)(NPhPPh2)(HNPhPPh2)3] . From the reaction of LiNPhPPh2 with Palladium-Nickel- and Cobaltcomplexes, depending on the reaction conditions, different monomeric and dimeric complexes can be isolated. In these compounds the (NPhPPh2)?-group acts as both a bridging and as a terminal ligand. [Pd(NPhPPh2)(PPh3)]2 ( 1 ), [Pd(NPhPPh2)2 · Li(thf)]2 ( 2 ) and [Pd(NPhPPh2)Cl · Li(thf)3]2 ( 3 ) are formed from the reaction of [PdCl2(PPh3)2] or [PdCl2(COD)] with LiNPhPPh2. In contrast to this from the reaction of Pd(Ac)2 and HNPhPPh2 (in the presence of zinc-dust) or [PtCl2(py)2] and LiNPhPPh2.  相似文献   

17.
A new metal–ligand bifunctional, pincer‐type ruthenium complex [RuCl( L1‐H2 )(PPh3)2]Cl ( 1 ; L1‐H2 =2,6‐bis(5‐tert‐butyl‐1H‐pyrazol‐3‐yl)pyridine) featuring two proton‐delivering pyrazole arms has been synthesized. Complex 1 , derived from [RuCl2(PPh3)3] with L1‐H2 , underwent reversible deprotonation with potassium carbonate to afford the pyrazolato–pyrazole complex [RuCl(L1‐H)(PPh3)2] ( 2 ). Further deprotonation of 1 and 2 with potassium hexamethyldisilazide in methanol resulted in the formation of the bis(pyrazolato) complex [Ru(L1)(MeOH)(PPh3)2] ( 3 ). Complex 3 smoothly reacted with dioxygen and dinitrogen to give the side‐on peroxo complex [Ru(L1)(O2)(PPh3)2] ( 4 ) and end‐on dinitrogen complex [Ru(L1)(N2)(PPh3)2] ( 5 ), respectively. On the other hand, the reaction of [RuCl2(PPh3)3] with less hindered 2,6‐di(1H‐pyrazol‐3‐yl)pyridine ( L3‐H2 ) led to the formation of the dinuclear complex [{RuCl2(PPh3)2}22‐ L3‐H2 )2] ( 6 ), in which the pyrazole‐based ligand adopted a tautomeric form different from L1‐H2 in 1 and the central pyridine remained uncoordinated. The detailed structures of 1 , 2 , 3 , 3.MeOH , 4 , 5 , 6 were determined by X‐ray crystallography.  相似文献   

18.
This paper reports the synthesis of a series of methylpyruvate thiosemicarbazone derivatives containing, on the terminal nitrogen, substituents of different nature and size and namely, ethyl, phenyl and methylphenyl. These ligands were reacted with bis(triphenylphosphine)copper(I) nitrate and acetate to produce the respective complexes: [Cu(PPh3)2(Et-Hmpt)]2(NO3)2 (1), [Cu(PPh3)2(Ph-Hmpt)]NO3 (2), [Cu(PPh3)2(MePh-Hmpt)]NO3 (3), [Cu2(O2CCH3)(Et-pt)(PPh3)2] · H2O (4), [Cu(Ph-mpt)(PPh3)] (5) and [Cu2(MePh-mpt)2(PPh3)2] (6). All of them were characterized by elemental analysis, IR, 1H NMR, EPR spectroscopy and, for compounds 1, 2, 4, and 6, by X-ray crystallography. The characterization revealed that the coordinating behaviour of the ligands is influenced by a series of factors, predominant among which is the hard soft nature of the atoms involved in the interactions with the metal centre. The complexes obtained from the nitrate copper(I) salt are formed by cationic molecules with a nitrate as a counterion, while those derived from the acetate salt present deprotonated ligands and a few unexpected features. In particular, one of the compounds (4) is a mixed valence dinuclear complex with an acetate oxygen and the thiosemicarbazone sulfur acting as bridging between the two Cu(I) and Cu(II) ions. Another one (6) presents instead a Cu(I)–Cu(I) sulfur bridged binuclear cluster.  相似文献   

19.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

20.
Reaction of Cy3PCS2 (Cy = cyclohexyl) with the hydrido complexes [RuClH(CA)(PPh3)3] (A  O, S), [RuH(CO)(NCMe)2(PPh3)2]+, and [RuH(OClO3)(CO)(CNtBu)(PPh3)2] leads to the complex cations [RuH(CA)(PPh3)22-S2CPCy3)]+, [Ru(η2-S2CHPCy3)(CO) (PPh3)2]+, [RuH(η1-S2CPCy3)(CO)(CNtBu)(PPh3)2]+. The σ-vinyl complex [Ru(CHCHC6H4Me-4)Cl(CO)(PPh3)2] reacts with Cy3PCS2 to give the cationic complex [Ru(CHCHC6H4Me-4) (CO)(PPh3)22-S2CPCy3)]+, but this complex is not formed by hydroruthenation of HCCC6H4Me-4 by [RuH(CO)(PPh3)22-S2CPCy3)]+. The inter-relationships between the above complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号