首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Eigenvector centrality is a popular measure that uses the principal eigenvector of the adjacency matrix to distinguish importance of nodes in a graph. To find the principal eigenvector, the power method iterating from a random initial vector is often adopted. In this article, we consider the adjacency matrix of a directed graph and choose suitable initial vectors according to strongly connected components of the graph instead so that nonnegative eigenvectors, including the principal one, can be found. Consequently, for aggregating nonnegative eigenvectors, we propose a weighted measure of centrality, called the aggregated-eigenvector centrality. Weighting each nonnegative eigenvector by the reachability of the associated strongly connected component, we can obtain a measure that follows a status hierarchy in a directed graph.  相似文献   

2.
Let G=(V,E) be a simple, connected and undirected graph with vertex set V(G) and edge set E(G). Also let D(G) be the distance matrix of a graph G (Jane?i? et al., 2007) [13]. Here we obtain Nordhaus–Gaddum-type result for the spectral radius of distance matrix of a graph.A sharp upper bound on the maximal entry in the principal eigenvector of an adjacency matrix and signless Laplacian matrix of a simple, connected and undirected graph are investigated in Das (2009) [4] and Papendieck and Recht (2000) [15]. Generally, an upper bound on the maximal entry in the principal eigenvector of a symmetric nonnegative matrix with zero diagonal entries and without zero diagonal entries are investigated in Zhao and Hong (2002) [21] and Das (2009) [4], respectively. In this paper, we obtain an upper bound on minimal entry in the principal eigenvector for the distance matrix of a graph and characterize extremal graphs. Moreover, we present the lower and upper bounds on maximal entry in the principal eigenvector for the distance matrix of a graph and characterize extremal graphs.  相似文献   

3.
In this article, we consider the existence of positive radial solutions for Hessian equations and systems with weights and we give a necessary condition as well as a sufficient condition for a positive radial solution to be large. The method of proving theorems is essentially based on a successive approximation technique. Our results complete and improve a work published recently by Zhang and Zhou(existence of entire positive k-convex radial solutions to Hessian equations and systems with weights. Applied Mathematics Letters,Volume 50, December 2015, Pages 48–55).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号