首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
Kinetics and mechanism of the gas-phase reaction of CH3C(O)OCH(CH3)CH2OCH3 (MPA) with OH radicals in the presence of O2 and NO have been investigated theoretically by performing a high and reliable level of theory, viz., CCSD(T)/6-311?+?G(d,p)//BH&HLYP/6-311++G(d,p)?+?0.9335×ZPE. The calculations predict that the H-abstraction from the ?CH2?O? position of MPA is the most facile channel, which leads to the formation of the corresponding alkoxy radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 under atmospheric conditions. This activated radicals CH3C(O)OCH(CH3)C(O ?)HOCH3 will undergo further rearrangement, fragmentation and oxidative reactions and predominantly leads to the formation of various products (methyl formate HC(O)OCH3 and acetic anhydride CH3C(O)OC(O)CH3). In the presence of water, acetic anhydride can convert into acetic acid CH3C(O)OH via the hydrolysis reaction. The calculated total rate constants over the temperature range 263–372?K are used to derive a negative activation energy (Ea= ?5.88 kJ/mol) and an pre-exponential factor (A?=?1.78×10?12 cm3 molecule?1 s?1). The obtained Arrhenius parameters presented here are in strong agreement with the experimental values. Moreover, the temperature dependence of the total rate constant over a temperature range of 263?1000?K can be described by k?=?5.60 × 10?14×(T/298?K)3.4×exp(1725.7?K/T) cm3 molecule?1 s?1.  相似文献   

2.
Theoretical studies have been carried out on the kinetics and thermochemistry of the thermal decomposition of the CH2FOCHFO radical formed during the photo-oxidation of CH2FOCH2F (HFE-152E) using the dual-level method of obtaining the optimised structure at DFT(M06-2X)/6-311++G(d,p) followed by a single-point energy calculation at the G3 level of theory. The rate constant for different reaction channels involved during the decomposition processes of CH2FOCHFO is evaluated at 298 K and 1 atm using canonical transition-state theory. The results point out that the C–H bond scission is the dominant path involving an energy barrier of 9.5 kcal mol?1 determined at the G3 level of theory. A potential energy diagram is constructed and the results are compared with the data available from the literature for a structurally similar molecule.  相似文献   

3.
Ab initio and density functional calculations have been performed to elucidate the mechanism of CH radical insertion into methane. The results show that the reaction can be viewed to occur via two stages. On the first stage, the CH radical approaches methane without large structural changes to acquire proper positioning for the subsequent stage, where H-migration occurs from CH4 to CH, along with a C–C bond formation. Where the first stage ends and the second begins, a tight transition state was located using the B3LYP/6-311G(d,p) and MP4(SDQ)/6-311++G(d,p) methods. Using a rigid rotor – harmonic oscillator approach within transition state theory, we show that at the MP5/6-311++G(d,p)//MP4(SDQ)/6-311++G(d,p) level the calculated rate constants are in a reasonably good agreement with experiment in a broad temperature range of 145–581 K. Even at low temperatures, the insertion reaction bottleneck is found about the location of the tight transition state, rather than at long separations between the CH and CH4 reactants. In addition, high level CCSD(T)-F12/CBS calculations of the remainder of the C2H5 potential energy surface predict the CH+CH4 reaction to proceed via the initial insertion step to the ethyl radical which then can emit a hydrogen atom to form highly exothermic C2H4+H products.  相似文献   

4.
本文利用CCSD(T)/6-311++(3df,3pd)//B3LYP-D3/6-311++G(3df,3pd)+ 0.9686×ZPE理论方法对(H2O)n (n=1-3)和H2SO4存在与不存在的情况下,H2CO3气相分解反应机理进行了理论研究。计算结果表明(H2O)n (n=1-3)和H2SO4都能使H2CO3气相分解反应的能垒显著地降低,其催化能力按由强到弱的顺序是H2SO4>(H2O)2>(H2O)3>H2O。  相似文献   

5.
The isomers of the carbonyl sulfide (OCS) molecule are investigated in detail at CCSD(T)/cc-pVTZ//MP2/6-311++G(2d,2p) level of theory. One cyclic isomer was identified along with three different linear minima of the OCS molecule. Three interconversion transition states were also located between cyclic and linear forms of OCS. Among these four isomers, the singlet potential energy surface (PES) for the molecule–molecule reaction between the three most energetically favoured isomers of OCS and H2O has been explored theoretically at the CCSD(T)/cc-pVTZ//MP2/6-311++G(2d,2p) level. This singlet PES comprises of three paths. Path 1 is the reaction of linear OCS molecule with water producing the major product P1 (CO2?+?H2S), minor product P2 (S?+?HCOOH) and two isomers via 14 minima and 15 transition states. The Path 2 is an isomerization process in which cyclic isomer of OCS reacts with water molecule via another initial barrierless aduct producing five isomers of the OCS–H2O system through five interconversion transition states. The reaction of linear COS isomer with water is shown in Path 3. This path produces the radicals SH and COOH from another COS–H2O complex via a transition state. Among these three products, the product P1 is energetically most favoured. The overall exothermicity of the product channels for the formation of major product P1 on PES is calculated to be about 10.60?kcal/mol possessing initial high entrance barriers of 45.48 and 55.47?kcal/mol in two possible pathways. As the process is favoured thermodynamically but not kinetically, the reaction is expected to be very slow.  相似文献   

6.
ABSTRACT

A direct dynamic study on the reactions of CH3O2?+?CH2O was carried out over the temperature range of 300–1500?K. All stationary points were calculated with the M06-2X/6-311++G(d,p) level of theory and identified for local minimum. The energetic parameters were refined at QCISD (T)/cc-pVTZ and CCSD (T)/cc-pVTZ levels of theory. Three channels were explored and a reaction of hydrogen abstraction from CH2O by CH3O2 was identified as dominant channel which involves the formation of a prereactive complex in the entrance channel. The rate coefficient of the dominant channel was calculated with TST and TST/Eck and the Eckart tunnelling effect is only important over the lower temperature region. The calculated rate coefficient of the dominant channel has positive temperature dependence and agrees reasonably with the available literature data.  相似文献   

7.
The mechanisms of gas-phase elimination kinetics of 2,2-dimethoxypropane in the presence of hydrogen chloride, trifluoroacetic acid and acetic acid were studied using Moller Plesset, ab initio combined method Complete Basis Set (CBS)-QB3 and various density functional theory methods with 6-311G(d,p) and 6-311++G(d,p) basis sets. The M06-2X/6-311++G(d,p) method provided reasonable agreement with the experimental enthalpy and energy of activation. Formation of 2-methoxypropene and methanol products occurs through six-membered cyclic ring transition state (TS) structure. The TS was characterised by single imaginary frequency, and confirmed through intrinsic reaction coordinate (IRC) calculations. The IRC calculations suggest the development of a van der Waal complex between the 2, 2-dimethoxy propane and the acid catalyst, leading to the TS formation. The process of decomposition in the absence of the acid catalyst requires much higher temperature with an energy of activation above 200 kJ/mol. This fact appears to be a consequence of a four-membered cyclic TS-type of mechanism in the non-catalysed reaction. Structural parameters, analyses of natural bond orbital charges and bond orders of the acid-catalysed elimination reactions in this study suggest that the polarisation of the C–O bond, in the direction Cδ+—Oδ?, is rate-determining in the TS. These reactions are non-synchronous concerted polar in nature.  相似文献   

8.
ABSTRACT

The mechanism and products of the reaction of (Z)-2-penten-1-ol [(Z)-PO21] with OH radical in the presence of O2 have been elucidated by using high-level quantum chemical methods CCSD(T)/6-311+G(d,p)//BH&;HLYP/6-311++G(d,p). The calculations clearly indicate that addition channels contribute maximum to the total reaction and H-abstraction channels can be neglected at temperatures of 220–500 K. The rate constant for the reaction of OH radical with (Z)-PO21 at 298 K is computed to be 1.22 × 10?10 cm3 molecule?1 s?1, which is in stronger agreement with the previously reported experimental values. The kinetic data obtained over the temperature range 220?500 K are used to derive an non-Arrhenius expression: k = 3.69 × 10?13 × exp(1763.7/T) cm3 molecule?1 s?1. For the reaction of (Z)-PO21with OH radical in the presence of O2, the major primary reaction products found in this study are propanal [CH3CH2C(O)H] and glycolaldehyde [HOCH2C(O)H], whereas formaldehyde [HC(O)H], 2-hydroxybutanal [CH3CH2CH(OH)C(O)H] and the epoxide P18 are anticipated to be minor products. The calculated results are consistent with the recent experimental observations.  相似文献   

9.
ABSTRACT

The structures, stability, and vibrational spectra of the binary complexes formed between acetone and nitrous (trans and cis) acid have been investigated using ab initio calculations at the SCF and MP2 levels and B3LYP calculations with 6-311++G(d,p) basis set. Full geometry optimization was made for the complexes studied. It was established that the complex (CH3)2CO···HONO-trans is more stable than the complex (CH3)2CO···HONO-cis by 0.5–0.8 kcal·mol?1. The accuracy of the calculations has been estimated by comparison between the predicted values of the vibrational characteristics (vibrational frequencies and infrared intensities) and the available experimental data. It was established, that the methods, used in this study are well adapted to the problem under examination. The predicted values with the B3LYP/6-311++G(d,p) calculations are very near to the results, obtained with MP2/6-311++G(d,p). The calculated frequency shift Δν(O[sbnd]H) for the complex (CH3)2CO···HONO-trans (1A) is larger than for the complex (CH3)2CO···HONO-cis (1B). In the same time the intensity of this vibration increases dramatically upon hydrogen bonding. The calculated increase for the complex 1A is up to 15 times and for the complex 1B is up to 30 times. The changes in the vibrational characteristics (vibrational frequencies and infrared intensities) of (CH3)2CO upon the complexation are more insignificant than the changes in the vibrational characteristics of HONO-trans and HONO-cis.  相似文献   

10.
A detailed computational study has been performed at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level for the NCO with CH3 reaction by constructing singlet and triplet potential energy surfaces (PES). The results show that the title reaction is more favorable for the singlet PES than the triplet PES. On the singlet PES, the dominant channel is the barrierless addition of the O or N atom to the C atom of the methyl group to form CH3NCO (IM1) and CH3OCN (IM2). On the triplet PES, the favorable channel is the barrierless addition of the N atom to the C atom of the methyl group to form an intermediate CH3NCO (3IM2), which then undergoes a N–C bond scission process to give out CH3N + CO.  相似文献   

11.
Cleavage of disulfide bonds is a common method used in linking peptides to proteins in biochemical reactions. The structures, internal rotor potentials, bond energies, and thermochemical properties (ΔfH°, S°, and Cp(T)) of the S–S bridge molecules CH3SSOH and CH3SS(=O)H and the radicals CH3SS?=O and C?H2SSOH that correspond to H‐atom loss are determined by computational chemistry. Structure and thermochemical parameters (S° and Cp(T)) are determined using density functional Becke, three‐parameter, Lee–Yang–Parr (B3LYP)/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p). The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6‐31++G (d, p), B3LYP/6‐311++G (3df, 2p), and the higher level composite CBS–QB3 levels with work reactions that are close to isodesmic in most cases. The enthalpies of formation for CH3SSOH, CH3SS(=O)H are ?38.3 and ?16.6 kcal mol?1, respectively, where the difference is in enthalpy RSO–H versus RS(=O)–H bonding. The C–H bond energy of CH3SSOH is 99.2 kcal mol?1, and the O–H bond energy is weaker at 76.9 kcal mol?1. Cleavage of the weak O–H bond in CH3SSOH results in an electron rearrangement upon loss of the CH3SSO–H hydrogen atom; the radical rearranges to form the more stable CH3SS· = O radical structure. Cleavage of the C–H bond in CH3SS(=O)H results in an unstable [CH2SS(=O)H]* intermediate, which decomposes exothermically to lower energy CH2 = S + HSO. The CH3SS(=O)–H bond energy is quite weak at 54.8 kcal mol?1 with the H–C bond estimated at between 91 and 98 kcal mol?1. Disulfide bond energies for CH3S–SOH and CH3S–S(=O)H are low: 67.1 and 39.2 kcal mol?1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The theoretical calculations on the mechanism of the homogeneous and unimolecular gas-phase elimination kinetics of alkyl chloroformates– ethyl chloroformate (ECF), isopropyl chloroformate (ICF), and sec-butyl chloroformate (SCF) – have been carried out by using CBS-QB3 level of theory and density functional theory (DFT) functionals CAM-B3LYP, M06, MPW1PW91, and PBE1PBE with the basis sets 6-311++G(d,p) and 6-311++G(2d,2p). The chlorofomate compounds with alkyl ester Cβ–H bond undergo thermal decomposition producing the corresponding olefin, HCl and CO2. These homogeneous eliminations are proposed to undergo two different types of mechanisms: a concerted process, or via the formation of an unstable intermediate chloroformic acid (ClCOOH), which rapidly decomposes to HCl and CO2 gas. Since both elimination mechanisms may occur through a six-membered cyclic transition state structure, it is difficult to elucidate experimentally which is the most reasonable reaction mechanism. Theoretical calculations show that the stepwise mechanism with the formation of the unstable intermediate chloroformic acid from ECF, ICF, and SCF is favoured over one-step elimination. Reasonable agreements were found between theoretical and experimental values at the CAM-B3LYP/6-311++G(d,p) level.  相似文献   

13.
采用M06-2X和CCSD(T)高阶量化计算和传统过渡态理论研究硫酸催化乙二醛气体相水化反应.对HCOCHO+H2O, HCOCHO+H2O+H2O, HCOCHO+H2O+H2O, HCOCHO+H2O...H2SO4和HCOCHO+H2O+H2SO4五个路径的反应机理和速率常数进行了研究.计算结果表明硫酸具有较强的催化能力,能显著减小乙二醛水化反应的能垒,在CCSD(T)/6-311++G(3df,3pd)//M06-2X/6-311++G(3df,3pd)理论水平,当硫酸分子参与乙二醛水化反应时,反应能垒从37.15 kcal/mol减少至7.08 kcal/mol.在室温条件下,硫酸催化乙二醛水化反应的反应速率1.34×10-11 cm3/(molecule.s),是等量水分子参与乙二醛水化反应的速率的1012倍,大于乙二醛与OH自由基反应的反应速率1.10×10-11 cm3/(molecule.s).这表明大气条件下,硫酸催化乙二醛水化反应可以发生,同乙二醛与OH自由基反应相竞争.  相似文献   

14.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
王克栋  关君  朱川川  刘玉芳 《物理学报》2011,60(7):73102-073102
采用从头计算B3LYP,MP3和MP4方法结合Aug-cc-pVDZ基组研究了CH3C(O)OSSOC(O)CH3最稳定的五种构象及其阳离子构型.理论计算了五种稳定构象的转动常数和偶极矩;运用电子传播子理论P3近似方法计算稳定构象外价壳层轨道的电离能,计算结果与光电子能谱实验结果符合的较好.根据构象的相对能量以及理论模拟电离能谱和实验光电子能谱之间的比较,说明在气相光电子能谱实验中至少存在两种构象.与中性构型相比,电离后的五种阳离子构型均发生了明显的结构弛豫,尤 关键词: 构象 电离能 相对能量 光电子能谱  相似文献   

16.
High levels of ab initio and DFT calculations (B3LYP/6‐311++G**, B3LYP/AUG‐cc‐pVTZ, and CCSD(T)/6‐311++G** levels) coupled with isodesmic reactions are used to compare and contrast the multiplicities and relative stabilities of singlet (s) and triplet (t) acyclic carbenes, including: dimethylcarbene, diaminocarbene, and diphosphinocarbene along with their saturated and unsaturated cyclic ones. Cyclization is unfavorable for all acyclic carbenes while unsaturation of cyclic analogs appears favorable. The simultaneous cyclization and unsaturation of dimethylcarbene increases the singlet–triplet energy gap (ΔEs–t), while for diphosphinocarbene the situation is reversed. For diaminocarbene the increase of ΔEs–t is encountered only during cyclization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
BeH,BeD,BeT分子基态(X2Σ+)的结构与势能函数   总被引:9,自引:0,他引:9       下载免费PDF全文
采用量子力学从头算方法,运用二次组态相互作用QCISD(T)/aug-cc-pVTZ和电子相关单双耦合簇CCSD(T)/6-311++G(3df,2pd)研究了BeH,BeD,BeT分子基态的结构与势能函数,计算出了这些分子的光谱数据(ωeωeχeBeαeDe),结果与实验光谱数据吻合较好.这表明上述分子基态的势能函数可用经修正的Murrell-Sorbie+c6函数来表示. 关键词: BeH BeD BeT分子基态 分子结构 势能函数  相似文献   

18.
王艳  张树东  朱湘君  孔祥和 《物理学报》2007,56(8):4491-4496
应用激光多光子电离质谱与超声脉冲分子束技术研究了乙醚团簇,实验中观测到乙醚的碎片离子以及强度较小的(E)H+,(E)2和(E)2H+(E代表CH3CH2OCH2CH3),没有发现更大尺寸的团簇离子.结合从头计算理论,在B3LYP/6-311++G(d,p 关键词: 乙醚团簇 偶极-偶极相互作用 从头计算  相似文献   

19.
利用量子化学计算方法对单个水分子不存在与存在的情况下OH自由基与CH3OOH的气相氢抽取反应进行了理论研究.在BHand HLYP/6-311++G(2df,2pd)理论水平下优化了所有驻点的几何构型,在此基础上利用CCSD(T)/cc-p VTZ方法对所有驻点的单点能重新进行了计算.计算结果表明,OH自由基与CH3OOH反应的主要通道是OH自由基抽取CH3OOH中的-OH基团上的H原子.在单个水分子存在的情况下,反应的主要通道没有改变,但是水化过渡态的能量显著地降低,显然单个水分子对OH+CH3OOH反应具有催化效应.  相似文献   

20.
利用QCISD(T),SAC-CI方法和cc-pVQZ,aug-cc-pVTZ,6-311++G及6-311++G(3df,2pd)基组,对MgH分子的基态X2Σ+,第一简并激发态A2Π和第二激发态B2Σ+的结构进行优化计算.通过对4个基组计算结果进行比较,得出6-311++G(3df,2pd)基组为最优基组.使用 关键词: 分子结构与势能函数 激发态 Murrell-Sorbie函数 C6函数')" href="#">Murrell-Sorbie+C6函数  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号