首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
As a generalization of directed and undirected graphs, Edmonds and Johnson [J. Edmonds, E.L. Johnson, Matching: A well-solved class of linear programs, in: R. Guy, H. Hanani, N. Sauer, J. Schönheim (Eds.), Combinatorial Structures and their Applications, Gordon and Breach, New York, 1970, pp. 88-92] introduced bidirected graphs. A bidirected graph is a graph each arc of which has either two positive end-vertices (tails), two negative end-vertices (heads), or one positive end-vertex (tail) and one negative end-vertex (head). We extend the notion of directed paths, distance, diameter and strong connectivity from directed to bidirected graphs and characterize those undirected graphs that allow a strongly connected bidirection. Considering the problem of finding the minimum diameter of all strongly connected bidirections of a given undirected graph, we generalize a result of Fomin et al. [F.V. Fomin, M. Matamala, E. Prisner, I. Rapaport, Bilateral orientations in graphs: Domination and AT-free classes, in: Proceedings of the Brazilian Symposium on Graphs, Algorithms and Combinatorics, GRACO 2001, in: Electronics Notes in Discrete Mathematics, vol. 7, Elsevier Science Publishers, 2001] about directed graphs and obtain an upper bound for the minimum diameter which depends on the minimum size of a dominating set and the number of bridges in the undirected graph.  相似文献   

2.
群G的一个Cayley图X=Cay(G,S)称为正规的,如果右乘变换群R(G)在AutX中正规.研究了4m阶拟二面体群G=a,b|a~(2m)=b~2=1,a~b=a~(m+1)的4度Cayley图的正规性,其中m=2~r,且r2,并得到拟二面体群的Cayley图的同构类型.  相似文献   

3.
4.
The power graph of a group is the graph whose vertex set is the group, two elements being adjacent if one is a power of the other. We observe that non-isomorphic finite groups may have isomorphic power graphs, but that finite abelian groups with isomorphic power graphs must be isomorphic. We conjecture that two finite groups with isomorphic power graphs have the same number of elements of each order. We also show that the only finite group whose automorphism group is the same as that of its power graph is the Klein group of order 4.  相似文献   

5.
Recently external memory graph problems have received considerable attention because massive graphs arise naturally in many applications involving massive data sets. Even though a large number of I/O-efficient graph algorithms have been developed, a number of fundamental problems still remain open.The results in this paper fall in two main classes. First we develop an improved algorithm for the problem of computing a minimum spanning tree (MST) of a general undirected graph. Second we show that on planar undirected graphs the problems of computing a multi-way graph separation and single source shortest paths (SSSP) can be reduced I/O-efficiently to planar breadth-first search (BFS). Since BFS can be trivially reduced to SSSP by assigning all edges weight one, it follows that in external memory planar BFS, SSSP, and multi-way separation are equivalent. That is, if any of these problems can be solved I/O-efficiently, then all of them can be solved I/O-efficiently in the same bound. Our planar graph results have subsequently been used to obtain I/O-efficient algorithms for all fundamental problems on planar undirected graphs.  相似文献   

6.
Let G be a finite group. A Cayley graph over G is a simple graph whose automorphism group has a regular subgroup isomorphic to G. A Cayley graph is called a CI-graph(Cayley isomorphism) if its isomorphic images are induced by automorphisms of G. A well-known result of Babai states that a Cayley graph Γ of G is a CI-graph if and only if all regular subgroups of Aut(Γ) isomorphic to G are conjugate in Aut(Γ). A semi-Cayley graph(also called bi-Cayley graph by some authors) over G is a simple graph whose automorphism group has a semiregular subgroup isomorphic to G with two orbits(of equal size). In this paper, we introduce the concept of SCI-graph(semi-Cayley isomorphism)and prove a Babai type theorem for semi-Cayley graphs. We prove that every semi-Cayley graph of a finite group G is an SCI-graph if and only if G is cyclic of order 3. Also, we study the isomorphism problem of a special class of semi-Cayley graphs.  相似文献   

7.
Graph algebras establish a connection between graphs (i.e. binary relations) and universal algebras. A structure theorem of Birkhoff-type is given which characterizes graph varieties, i.e. classes of graphs which can be defined by identities for their corresponding graph algebras: A class of finite directed graphs without multiple edges is a graph variety iff it is closed with respect to finite restricted pointed subproducts and isomorphic copies. Several applications are given, e.g., every loopless finite directed graph is an induced subgraph of a direct power of a graph with three vertices. Graphs with bounded chromatic number or density form graph varieties characterizable by identities of special kind.Presented by R. W. Quackenbush.  相似文献   

8.
Given a (directed or undirected) graph with edge costs, the power of a node is the maximum cost of an edge leaving it, and the power of the graph is the sum of the powers of its nodes. Motivated by applications for wireless networks, we present polynomial and improved approximation algorithms, as well as inapproximability results, for some classic network design problems under the power minimization criteria. Our main result is for the problem of finding a min-power subgraph that contains k internally-disjoint vs-paths from every node v to a given node s: we give a polynomial algorithm for directed graphs and a logarithmic approximation algorithm for undirected graphs. In contrast, we will show that the corresponding edge-connectivity problems are unlikely to admit even a polylogarithmic approximation.  相似文献   

9.
Directed graphs have long been used to gain an understanding of the structure of semigroups, and recently the structure of directed graph semigroups has been investigated resulting in a characterization theorem and an analog of Frucht’s Theorem. We investigate two inverse semigroups defined over undirected graphs constructed from the notions of subgraph and vertex set induced subgraph. We characterize the structure of the semilattice of idempotents and lattice of ideals of these inverse semigroups. We prove a characterization theorem that states that every graph has a unique associated inverse semigroup up to isomorphism allowing for an algebraic restatement of the Edge Reconstruction Conjecture.  相似文献   

10.
This paper deals with the isomorphism problem of directed path graphs and rooted directed path graphs. Both graph classes belong to the class of chordal graphs, and for both classes the relative complexity of the isomorphism problem is yet unknown. We prove that deciding isomorphism of directed path graphs is isomorphism complete, whereas for rooted directed path graphs we present a polynomial-time isomorphism algorithm.  相似文献   

11.
We consider the normalized Laplace operator for directed graphs with positive and negative edge weights. This generalization of the normalized Laplace operator for undirected graphs is used to characterize directed acyclic graphs. Moreover, we identify certain structural properties of the underlying graph with extremal eigenvalues of the normalized Laplace operator. We prove comparison theorems that establish a relationship between the eigenvalues of directed graphs and certain undirected graphs. This relationship is used to derive eigenvalue estimates for directed graphs. Finally we introduce the concept of neighborhood graphs for directed graphs and use it to obtain further eigenvalue estimates.  相似文献   

12.
Enumerating the isomorphism classes of several types of graph coverings is one of the central research topics in enumerative topological graph theory (see [R. Feng, J.H. Kwak, J. Kim, J. Lee, Isomorphism classes of concrete graph coverings, SIAM J. Discrete Math. 11 (1998) 265-272; R. Feng, J.H. Kwak, Typical circulant double coverings of a circulant graph, Discrete Math. 277 (2004) 73-85; R. Feng, J.H. Kwak, Y.S. Kwon, Enumerating typical circulant covering projections onto a circulant graph, SIAM J. Discrete Math. 19 (2005) 196-207; SIAM J. Discrete Math. 21 (2007) 548-550 (erratum); M. Hofmeister, Graph covering projections arising from finite vector spaces over finite fields, Discrete Math. 143 (1995) 87-97; M. Hofmeister, Enumeration of concrete regular covering projections, SIAM J. Discrete Math. 8 (1995) 51-61; M. Hofmeister, A note on counting connected graph covering projections, SIAM J. Discrete Math. 11 (1998) 286-292; J.H. Kwak, J. Chun, J. Lee, Enumeration of regular graph coverings having finite abelian covering transformation groups, SIAM J. Discrete Math. 11 (1998) 273-285; J.H. Kwak, J. Lee, Isomorphism classes of graph bundles, Canad. J. Math. XLII (1990) 747-761]). A covering is called abelian (or circulant, respectively) if its covering graph is a Cayley graph on an abelian (or a cyclic, respectively) group. A covering p from a Cayley graph onto another Cay (Q,Y) is called typical if the map p:AQ on the vertex sets is a group epimorphism. Recently, the isomorphism classes of connected typical circulant r-fold coverings of a circulant graph are enumerated in [R. Feng, J.H. Kwak, Typical circulant double coverings of a circulant graph, Discrete Math. 277 (2004) 73-85] for r=2 and in [R. Feng, J.H. Kwak, Y.S. Kwon, Enumerating typical circulant covering projections onto a circulant graph, SIAM J. Discrete Math. 19 (2005) 196-207; SIAM J. Discrete Math. 21 (2007) 548-550 (erratum)] for any r. As a continuation of these works, we enumerate in this paper the isomorphism classes of typical abelian prime-fold coverings of a circulant graph.  相似文献   

13.
In this paper, we study oriented bipartite graphs. In particular, we introduce “bitransitive” graphs. Several characterizations of bitransitive bitournaments are obtained. We show that bitransitive bitounaments are equivalent to acyclic bitournaments. As applications, we characterize acyclic bitournaments with Hamiltonian paths, determine the number of non-isomorphic acyclic bitournaments of a given order, and solve the graph-isomorphism problem in linear time for acyclic bitournaments. Next, we prove the well-known Caccetta-Häggkvist Conjecture for oriented bipartite graphs in some cases for which it is unsolved, in general, for oriented graphs. We also introduce the concept of undirected as well as oriented “odd-even” graphs. We characterize bipartite graphs and acyclic oriented bipartite graphs in terms of them. In fact, we show that any bipartite graph (acyclic oriented bipartite graph) can be represented by some odd-even graph (oriented odd-even graph). We obtain some conditions for connectedness of odd-even graphs. This study of odd-even graphs and their connectedness is motivated by a special family of odd-even graphs which we call “Goldbach graphs”. We show that the famous Goldbach's conjecture is equivalent to the connectedness of Goldbach graphs. Several other number theoretic conjectures (e.g., the twin prime conjecture) are related to various parameters of Goldbach graphs, motivating us to study the nature of vertex-degrees and independent sets of these graphs. Finally, we observe Hamiltonian properties of some odd-even graphs related to Goldbach graphs for a small number of vertices.  相似文献   

14.
《Discrete Mathematics》2019,342(2):314-325
A dessin is a 2-cell embedding of a connected 2-coloured bipartite graph into an orientable closed surface. A dessin is regular if its group of colour- and orientation-preserving automorphisms acts regularly on the edges. In this paper we employ group-theoretic method to determine and enumerate the isomorphism classes of regular dessins with complete bipartite underlying graphs of odd prime power order.  相似文献   

15.
Ricerche di Matematica - Let G be a finite group and $$N \unlhd G$$ . The normal subgroup based power graph of G, $$\Gamma _N(G)$$ , is an undirected graph with vertex set $$(G{\setminus }N) \cup...  相似文献   

16.
Can a directed graph be completed to a directed line graph? If possible, how many arcs must be added? In this paper we address the above questions characterizing partial directed line (PDL) graphs, i.e., partial subgraph of directed line graphs. We show that for such class of graphs a forbidden configuration criterion and a Krausz's like theorem are equivalent characterizations. Furthermore, the latter leads to a recognition algorithm that requires O(m) worst case time, where m is the number of arcs in the graph. Given a partial line digraph, our characterization allows us to find a minimum completion to a directed line graph within the same time bound.The class of PDL graphs properly contains the class of directed line graphs, characterized in [J. Blazewicz, A. Hertz, D. Kobler, D. de Werra, On some properties of DNA graphs, Discrete Appl. Math. 98(1-2) (1999) 1-19], hence our results generalize those already known for directed line graphs. In the undirected case, we show that finding a minimum line graph edge completion is NP-hard, while the problem of deciding whether or not an undirected graph is a partial graph of a simple line graph is trivial.  相似文献   

17.
For a finite group G, the intersection graph of G which is denoted by Γ(G) is an undirected graph such that its vertices are all nontrivial proper subgroups of G and two distinct vertices H and K are adjacent when HK ≠ 1. In this paper we classify all finite groups whose intersection graphs are regular. Also, we find some results on the intersection graphs of simple groups and finally we study the structure of Aut(Γ(G)).  相似文献   

18.
A digraph \({\overrightarrow{\mathcal{Pc}}(G)}\) is said to be the directed power graph on the conjugacy classes of a group G, if its vertices are the non-trivial conjugacy classes of G, and there is an arc from vertex C to C′ if and only if \({C \neq C'}\) and \({C \subseteqq {C'}^{m}}\) for some positive integer \({m > 0}\). Moreover, the simple graph \({\mathcal{Pc}(G)}\) is said to be the (undirected) power graph on the conjugacy classes of a group G if its vertices are the conjugacy classes of G and two distinct vertices C and C′ are adjacent in \({\mathcal{Pc}(G)}\) if one is a subset of a power of the other. In this paper, we find some connections between algebraic properties of some groups and properties of the associated graph.  相似文献   

19.
Tongsuo Wu  Dancheng Lu   《Discrete Mathematics》2008,308(22):5122-5135
In this paper we study sub-semigroups of a finite or an infinite zero-divisor semigroup S determined by properties of the zero-divisor graph Γ(S). We use these sub-semigroups to study the correspondence between zero-divisor semigroups and zero-divisor graphs. In particular, we discover a class of sub-semigroups of reduced semigroups and we study properties of sub-semigroups of finite or infinite semilattices with the least element. As an application, we provide a characterization of the graphs which are zero-divisor graphs of Boolean rings. We also study how local property of Γ(S) affects global property of the semigroup S, and we discover some interesting applications. In particular, we find that no finite or infinite two-star graph has a corresponding nil semigroup.  相似文献   

20.
The power graph of a finite group is the graph whose vertex set is the group, two distinct elements being adjacent if one is a power of the other. In this article, we classify the finite groups whose power graphs have (non)orientable genus two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号