首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mg-, Al and Mg-, Cu-, Al-layered double hydroxides well-known synthetic hydrotalcite-like sorbents, were used for the first time as carriers for indicators in the sorption catalytic determination of copper(II) and L-α-alanine. Mg-, Al and Mg-, Cu-, Al-layered double hydroxides were synthesized by coprecipitation and characterized using infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The adsorption of 0.50?mg?L?1 copper(II) solution by Mg-, Al-layered double hydroxides followed a pseudo-second-order model with an equilibrium sorption capacity of 24.2?×?10?3?mg?g?1 (3.8?×?10?4?mmol g?1) and a reaction rate constant of 4.2?g mg?1?min?1. Mg-, Al-layered double hydroxide tablets were prepared and used for sorption concentration and subsequent sensitive and selective sorption catalytic determination of 5.5?×?10?3 to 1.0?mg?L?1 copper(II) at the sorbent phase. The method was used for the analysis of natural water. A method was developed for the determination of α-alanine in Mg-, Cu-, Al-layered double hydroxide tablets with a limit of detection of 4.0?×?10?3 mol?L?1. In addition, thin layers of Mg-, Cu-, Al-layered double hydroxide were used to separate α-alanine and determine α-amino acids by thin-layer chromatography.  相似文献   

2.
Effectiveness of Pd/Mg chemical modifier for the accurate direct determination of zinc in marine/lacustrine sediments by graphite furnace atomic absorption spectrometry (GF-AAS) using slurry samples was evaluated. A calibration curve prepared by aqueous zinc standard solution with addition of Pd/Mg chemical modifier is used to determine the zinc concentration in the sediment. The accuracy of the proposed method was confirmed using Certified Reference Materials, NMIJ CRM 7303-a (lacustrine sediment) from National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Japan, and MESS-3 (marine sediment) and PACS-2 (marine sediment) from National Research Council, Canada. The analytical results obtained by employing Pd/Mg modifier are in good agreement with the certified values of all the reference sediment materials. Although for NRC MESS-3 an accurate determination of zinc is achieved even without the chemical modifier, the use of Pd/Mg chemical modifier is recommended as it leads to establishment of a reliable and accurate direct analytical method. One quantitative analysis takes less than 15 minutes after we obtain dried sediment samples, which is several tens of times faster than conventional analytical methods using acid digested sample solutions. The detection limits are 0.13?µg?g?1 (213.9?nm) and 16?µg?g?1 (307.6?nm), respectively, in sediment samples, when 40?mg of dried powdered samples are suspended in 20?mL of 0.1?mol?L?1 nitric acid and a 10?µl portion of the slurry sample is measured. The precision of the proposed method is 8–15% (RSD).  相似文献   

3.
A method was developed for the on-line determination of palladium in complex matrices with flame atomic absorption spectrometry (FAAS) using Amberlite XAD-16 resin functionalized with 2-[2-(5-thiol-1,3,4-thiadiazolyl)]-azonaphthol (TTAN) reagent. Optimum experimental conditions such as pH of sample, type of eluent, amount of resin, volumes of sample and eluent solution, flow rates of sample and eluent, and effect of interfering ions were established. A 0.1?mol?L?1 thiourea solution in 0.5?mol?L?1 HCl was used as the eluent and subsequently transportation the analyte ions into the nebulizer–burner system for atomization. The synthesized chelating resin material showed excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates without significant losses of retention efficiency. The detection limit of the method was 1.5?µg?L?1 while the relative standard deviation (RSD%) was 2.4% at 0.1?mg?L?1 Pd(II) level. The developed method was successfully applied to the determination of palladium in the catalytic converter and water samples.  相似文献   

4.
An automatic on-line system is developed for the trace determination of copper and iron species in fresh waters by flame atomic absorption spectrometry using only 5 and 2?mL of sample, for copper and iron determination, respectively. This system, which includes a home-made minicolumn of commercially available resin containing aminomethylphosphonic acid functional groups (Chelite P), comprises two operational modes. The first, used for the determination of the dissolved labile fraction (free copper and iron ions and their weak complexes) is based on the elution of this fraction from a minicolumn containing the chelating resin loaded in-situ with the sample. The second mode is used for the determination of total trace copper and iron concentrations. This last mode is based on the retention/preconcentration of total metals on the Chelite P resin after on-line sonoassisted digestion of water samples acidified with nitric acid (0.5?mol?L?1 final concentration) to break down metal organic complexes present in fresh waters as river waters. The figures of merit for copper and iron determination in both fractions are given and the obtained values are discussed. The analytical method was characterized and the limit of detection and limit of quantification for the two metals were 0.5 and 1.6?µg?L?1 for Cu and 2.3 and 6.1?µg?L?1 for Fe, respectively. The repeatability, expressed as relative standard deviation, was in the range 1.0–2.1%. The speciation scheme was applied to the analysis of river surface water samples collected in Galicia (Northwest, Spain).  相似文献   

5.
A cellulose–graphite oxide composite was synthesized and characterized as an adsorbent for dispersive solid-phase extraction of rhodium from various samples before atomic absorption detection. The pH, adsorbent volume, centrifugation time and rate, eluent concentration, volume and type, adsorption and elution contact time, sample volume, and matrix interferences were optimized. The developed method is simple, rapid, and inexpensive. The tolerance limits for rhodium were 10,000?mg?L?1 sodium, 25,000?mg?L?1 potassium, 10,000?mg?L?1 magnesium, and 20,000?mg?L?1 calcium. The recovery for rhodium exceeded 95%. Elution was performed with 10?mL of 2.5?mol?L?1 H2SO4. The adsorption and elution contact times were 30 and 60?s, respectively. The detection limit of the method for rhodium was 5.4?µg?L?1 and the precision as the relative standard deviation was 1.6%. A certified reference material 2556 (used auto catalyst pellets) and fortified samples were analyzed to evaluate the accuracy of the method. The optimized method was used for the preconcentration of rhodium from tap water, well water, wastewater, seawater, catalytic converters, and street dust.  相似文献   

6.
Novel and fast deep eutectic solvent (DES)-based homogeneous liquid–liquid microextraction (HLLME) was applied for the extraction of copper from vegetable samples followed by flame atomic absorption spectrometry (FAAS). 1,5-diphenyl carbazone (DPC) was used as the chelating agent, and a DES was used as the extraction media. The utilized DES was based on benzyl triphenyl phosphonium bromide and ethylene glycol in a 1:8?mole ratio. The phase separation phenomenon was occurred by changing of sample temperature. Several factors influencing the extraction efficiency were investigated and optimized. Under the optimized conditions, an enhancement factor of 64 was obtained. The limit of detection, based on three signal-to-noise ratio, and limit of quantification were found to be 0.13?µg L?1 and 5.0?µg L?1, respectively. The calibration curve was linear within the range of 5.0–250?µg L?1 with r2 > 0.9957. Intra- and inter-day relative standard deviations (%) of 2.1% and 2.6% were obtained at the concentration of 25?µg L?1. The accuracy of the proposed method was evaluated by analyzing a tomato leaves certified reference material and the results were to be in agreement with the certified value. Finally, the feasibility of the method was successfully confirmed by determination of copper in spinach, lettuce, broccoli, potato, carrot and parsley samples.  相似文献   

7.
A simple, rapid, sensitive, and inexpensive method for spectrophotometric determination of chromium(VI), based on the absorbance of its complex with 1,4,8,11-tetraazacyclotetradecane (cyclam) is presented. The complex showed a molar absorbtivity of 1.5?×?104?L?mol?1?cm?1 at 379?nm. Under optimum experimental conditions, a pH of 4.5 and 1.960?×?103?mg?L?1 cyclam were selected, and all measurements were performed 10?min after mixing. Major cations and anions did not show any interference; Beer's law was applicable in the concentration range 0.2–20?mg?L?1 with a detection limit of 0.001?mg?L?1. The standard deviation in the determination is ±0.5?mg?L?1 for a 15.0?mg?L?1 solution (n?=?7). The described method provides a simple and reliable means for determination of Cr(VI) in real samples.  相似文献   

8.
A method for quantitative depth profiling of polymer stabilisers in polypropylene materials is presented. Microtome cuts down to 10 μm thickness were prepared and an amount of as low as 10 mg was used for subsequent analysis. The sample preparation procedure included dissolution in toluene, followed by precipitation of the polymer by addition of methanol or acetonitrile, and subsequent analysis of the solution by reversed phase HPLC coupled with UV, MS and MS2 detection. A comparison of the different detection techniques is given and their particular advantages are discussed. Depending on the stabiliser type, the presented method with MS detection can quantify stabiliser concentrations down to 0.007 mg?L?1 (this corresponds to 0.0007 mg?g?1 in the polymer sample) with repeatabilities better than 5 % relative standard deviation (n?=?3). This equals a quantitation of absolute stabiliser amounts at the 0.1-μg level and concentrations down to 0.1 mg?L?1 in the corresponding polymer extracts. The developed method shows high sensitivity by the use of MS detection as well as good repeatabilities. Mainly due to the use of an appropriate internal standard, improved repeatability during sample extraction could be obtained. Furthermore, the applicability to real samples has been demonstrated.  相似文献   

9.
The authors describe a method for the trace determination of copper (II) and lead (II) in water and fish samples using solid-phase extraction via siliceous mesocellular foam functionalised by dithizone. Siliceous mesocellular was functionalised with dithizone, and the resulting sorbent was characterised by scanning electron microscopy, surface area analysis, thermogravimetric/differential thermal analysis and FTIR. Following solid-phase extraction of target ions by the sorbent, copper and lead ions were quantified by flame atomic absorption spectrometry. Factors affecting the sorption and desorption of target ions by the sorbent were evaluated and optimised. The calibration plot is linear in the 1 – 500 μg L?1 copper (II) and 3–700 μg L?1 lead (II) concentration range. The relative recovery efficiency in real sample analysis is in the range from 96 to 102%, and precision varies between 1.7 and 2.8%. It is should be noted that the limits of detection for the copper and lead analysis were 0.8 and 1.6 μg L?1, respectively. Also, the adsorption capacities for copper and lead ions were 120 and 160 mg g?1, respectively. The obtained pre-concentration factor for the lead and copper ions by the proposed solid-phase extraction was 75. The method was successfully applied to the determination of low levels of copper (II) and lead (II) in tap, Caspian sea, Persian gulf and lake water and also their detection in fish samples.  相似文献   

10.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

11.
《Analytical letters》2012,45(9):1571-1578
Abstract

The present paper describes the evaluation and application of internal standard for the determination of copper in fruit juices, employing Fast Sequential Flame Atomic Absorption Spectrometry (FS FAAS). The internal standards tested were indium, cobalt, and nickel using correlation graphs. However, indium was used, considering the composition of the samples. After this step, copper was determined in fruit juices using indium as internal standard. This method allows the determination of copper with a limit of quantification of 0.011 mg L?1. The fruit juice samples selected for analysis were of grape, orange, pineapple, peach, cashew, and strawberry. The contents of copper in these samples varied from 0.02 to 0.42 mg L?1. The analytical results were compared with the results obtained by analysis of these samples after complete mineralization using acid digestion and determination employing FS FAAS. The statistical comparison by a t-test (95% confidence level) showed no significant difference between the results. The relative standard deviations (RSD) with and without the use of the internal standard for a copper solution containing 0.4 mg L?1 were of 0.62 and 1.94%, respectively. The use of indium as internal standard provided more accurate analytical results, as well as better analytical performance for the determination of copper in juice samples.  相似文献   

12.
The voltammetric performance of an in situ plated antimony film screen-printed carbon electrode in hydrochloric acid, acetate buffer, and tartrate buffer was evaluated for the detection of copper(II) with differential pulse anodic stripping voltammetry. The tartrate buffer was superior, providing high sensitivity and good separation of copper and antimony stripping peaks. The analytical conditions for the determination of copper(II) were optimized. The detection limit was estimated to be 0.14?µg?L?1 copper(II) and the relative standard deviation for 2.5?µg?L?1 copper(II) was 3%. The applicability of the method was illustrated by the analysis of soil conditioner samples.  相似文献   

13.
The present work reports a simple and quick strategy for simultaneous determination of paracetamol (PC) and ascorbic acid (AA) in pharmaceutical formulations using flow injection method with multiple pulse amperometric detection. The method allows the resolution of the mixture without chemical pretreatment of the sample or electrode modification or the use of chemometric techniques for data analysis. The compounds are detected by applying four sequential pulses (waveform) in function of time to a three‐electrode amperometric system that uses a wall‐jet cell with gold as working electrode. AA is direct detected at +0.40 V and PC is indirectly detected at 0.0 V by the reduction (desorption) of the oxidation product (N‐acetyl‐p‐benzoquinoneimine) electrochemically generated at +0.65 V. The fourth potential pulse (?0.05 V) is applied for the complete regeneration (cleaning) of the gold electrode surface. The linear response range was optimized between 5 and 24 mg L?1 for AA and 50 and 240 mg L?1 for PC. The difference between the two responses ranges (10‐fold) present correlation with the concentration of these compounds in two different pharmaceutical formulations available in the Brazilian market. The analytical frequency was calculated in 60 injections per hour. The use of the proposed methodology for PC quantification in the presence of higher AA concentrations was also carried out. Using the standard addition method, it was possible to detect PC in trace levels (LD=0.2 mg L?1) in the presence of 880‐fold more of AA (176 mg L?1).  相似文献   

14.
A novel method is presented for determination of heavy metal ions in a high-saline matrix. It is based on the electrodeposition of the ions and subsequent laser ablation coupled to inductively coupled plasma optical emission spectrometry (LA-ICP-OES). Three arrangements for electrodeposition were worked out, two of them with stationary working electrodes. Materials for use in the working electrodes, and conditions for electrodeposition of Cd, Cr and Cu (pH, deposition current, time of electrolysis) were studied. Nickel was found to be the best electrode material. The metals accumulate on the surface of electrode and were then evaporated/ablated with a Nd:YAG laser focused into the ICP-OES spectrometer. The detection limits are 0.13 mg?L?1 for Cd, 0.15 mg?L?1 for Cu, and 1.9 mg?L?1 for Cr in case of a stationary bottom working electrode, and 0.25 mg?L?1 for Cd, 0.05 mg?L?1 for Cu, 0.8 mg?L?1 for Cr when using a rotating electrode. The relative standard deviation is in range from 3.8 to 10.3%. Waste water was analyzed in this way by the standard addition method.  相似文献   

15.
Detailed below is a simple reversed-phase liquid chromatography (RP-LC) method for the simultaneous separation of up to 21 acidic, basic, and neutral pharmaceuticals using Merck Chromolith Performance RP-C18e monolithic columns with direct ultraviolet (UV) absorption detection. By simultaneously applying a solvent elution gradient program with a mobile phase flow gradient, both a decrease in the overall analysis time and a general increase in peak efficiencies were observed. Mobile phase pH and buffer concentration were optimised using the overall resolution product under applied gradient conditions. Under optimised conditions peak area reproducibility (n?=?6) ranged between 0.4 and 9.3%, determined at the method LOQ level. For real sample analysis pharmaceutical residues were extracted using an optimised solid phase extraction (SPE) procedure, utilising Strata-X extraction cartridges, which overall provided the highest relative recovery data in comparison with four other commercially available SPE sorbents (17 out of 20 residues investigated had recoveries over 70%). Complete method precision, including all sample pre-treatment and LC analysis for six spiked river water samples at the 1 and 2?µg?L?1 level was between 10 and 29%. Using 1?L volumes of 1?µg?L?1 spiked estuarine water samples, the majority of detection limits were found to be in the 10–50?ng?L?1 range.  相似文献   

16.
A simple and robust analytical method for analysis of octyl- and nonylphenol as well as their short-chained ethoxylates in river water was proposed. Quantification of these analytes was performed by high-performance liquid chromatography with fluorescence detection after isolation using solid phase extraction with polytetrafluoroethylene sorbent. The method allowed one to obtain about 80–100% recovery for octylphenol and its ethoxylates and 70–80% for nonylphenol and its ethoxylates. Also, there was no need for additional sample cleaning before chromatographic analysis. The limit of detection was 0.01?µg?L?1 for octylphenol and its ethoxylates and 0.03?µg?L?1 for nonylphenol and its ethoxylates. The proposed method was used for quantitation of octyl- and nonylphenol together with their short-chained ethoxylates. Nonylphenol, nonylphenol mono- and diethoxylates were detected at concentrations ranging from 0.12 to 0.53?µg?L?1. Octylphenol, octylphenol mono- and diethoxylates were detected in four out of eleven samples at concentrations ranging from 0.03 to 0.17?µg?L?1. High concentrations of nonylphenol and its ethoxylates were found in the samples, despite the fact that their use in European countries was forbidden several years ago.  相似文献   

17.
A square wave cathodic stripping voltammetric (SWCSV) method has been developed for the determination of insecticide diafenthiuron. The procedure is based on controlled accumulation of the insecticide on a static hanging mercury drop electrode (SHMDE) at 0.00?mV (vs. Ag/AgCl) in Britton-Robinson buffer solution (pH 7.0). The insoluble mercury compound was reduced at ?510?mV during the cathodic potential scan. The peak currents were linearly related to insecticide concentration between 30.4 and 3200?µg?L?1 . The detection and quantification limit were 9.1?µg?L?1 and 30.4?µg?L?1, respectively. The proposed analytical procedure was applied to natural water and soil samples. The method was extended to direct determination of diafenthiuron in insecticide formulation Polo® 50 WP and average content of 50.3?±?1.7 (m/m) at 90% confidence level, in close agreement with the 50.0% quoted by the manufacturer. HPLC comparison method indicated that accuracy was in agreement with that obtained by the proposed method.  相似文献   

18.
In this work, a sensitive flow injection chemiluminescence (FI-CL) method for the determination of nematicide Fenamiphos in a rapid and simple way is proposed. Fenamiphos is first photodegraded in basic medium. These photofragments react with Ce(IV) providing the chemiluminescence signal. To the authors’ knowledge, no chemiluminescence method has been described in the literature for the determination of the nematicide Fenamiphos. All physical and chemical parameters in the flow injection chemiluminescence system were optimized in order to obtain the best sensitivity, selectivity and sample throughput. Before the injection of the sample in the FI-CL system, a preconcentration step with solid phase extraction C18 cartridges was performed. By applying solid phase extraction (SPE) to 250?mL of standard (final volume 10?mL), the linear dynamic range was between 3.4 and 60?µg?L?1, and the detection limit was 1?µg?L?1. When SPE was applied to 500?mL of standard (final volume 10?mL), the detection limit was 0.5?µg?L?1. These detection limits are below the emission limit value established by the Spanish Regulations of the Hydraulic Public Domain for pesticides (50?µg?L?1) and of the same order as the limit established for total pesticides (0.5?µg?L?1) at European Directive on the quality of water for human consumption. The sample throughput was 126 hour?1. Intraday and interday coefficients of variation were below 10% in all cases. No interference was registered in presence of usual concentrations of anions, cations and other organophosphorus pesticides. The method was successfully applied to the analysis of environmental water samples, obtaining recoveries between 96 and 107.5%.  相似文献   

19.
The complexes formed between copper and thiram and between mercury and thiram have been electrochemically (voltammetrically) investigated in the present work. Their structure was confirmed using electrospray ionization mass spectrometry. Due to formation of the complex between copper (from copper solid amalgam electrode) and thiram, the concentration of this pesticide can be determined. The voltammetric behavior of thiram was investigated at polished (p-CuSAE) and mercury meniscus modified (m-CuSAE) copper solid amalgam electrodes (inner diameter 1.5 mm) by differential pulse voltammetry (DPV) and by direct current voltammetry (DCV). Optimum conditions for DPV determination of thiram were found in Britton–Robinson buffer. The reaction mechanism was investigated using DCV and elimination voltammetry with linear scan. DPV with optimized parameters was applied for determination of thiram in analyzed solutions. The limits of detection were calculated as 16 nmol?L?1 (t acc?=?100 s) for m-CuSAE and 23 nmol?L?1 (t acc?=?60 s) for p-CuSAE. The proposed method was successfully applied for thiram determination in real sample solutions.  相似文献   

20.
Energy dispersive X-Ray fluorescence (EDXRFS) method is developed and standardized for the determination of uranium on routine basis in various process stream solutions, covering a vide range of concentrations from 0.1 to 400?g?L?1, from an Uranium Extraction Plant at Nuclear Fuel Complex. The method has been applied to aqueous stream samples. Except for dilution, no much sample preparation was involved in the analysis and accordingly the experimental parameters were optimized. The calibration curve in the range of 0.1?C10?g?L?1 of U was drawn manually using synthetic standard solutions prepared from U3O8 powder and L?? (13.61?keV) line of uranium was used for the measurements. The results from EDXRFS method are compared with other methods and are found to be in good agreement. The EDXRFS measurements carried over a range of 0.1?C350?g?L?1 of uranium have shown a RSD of ±1?C5%. Also, the limitations of reported methods in literature and the advantages of present method are highlighted in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号