共查询到20条相似文献,搜索用时 31 毫秒
1.
Samahe Sadjadi 《应用有机金属化学》2018,32(3)
Combining the excellent features of halloysite nanoclay and cyclodextrin, a novel hybrid system was designed and synthesized based on covalent attachment of tosylated cyclodextrin to thiosemicarbazide‐functionalized halloysite nanoclay and used for the immobilization of Pd nanoparticles. The resulting hybrid, Pd@HNTs‐T‐CD, was then characterized using various techniques, and successfully used for promoting copper‐ and ligand‐free Sonogashira coupling reactions of halobenzenes and acetylenes in a mixture of water and ethanol. Notably, under Pd@HNTs‐T‐CD catalysis, the reaction could proceed in relatively short reaction time to furnish the corresponding products in high yields. Additionally, the catalyst was recyclable and could be simply recovered and reused for several reaction runs. Results also established negligible leaching of Pd, indicating the efficiency of HNTs‐T‐CD for embedding Pd nanoparticles. 相似文献
2.
《Arabian Journal of Chemistry》2022,15(8):103962
MOF-253·Pd(OAc)2 and MOF-253·CuI were prepared, characterized, and evaluated firstly as heterogeneous co-catalysts, which showed high catalytic activity in Sonogashira coupling reaction of various substituted (hetero)aryl halides with terminal alkynes at 70–120 °C, and afforded the corresponding products in 45–99% yields with high TON (~2722 for Pd). The best result was achieved with an extremely low Pd (0.036 mol%) and Cu (0.397 mol%) loading. Moreover, the catalysts can be reused at least five times without significantly reducing the activity. Besides, Hg(0) and PVP-poisoning experiments confirmed that the present catalysts were efficient and heterogeneous catalysts in this coupling reaction. 相似文献
3.
An alternative approach to develop a Pd catalyst based on dendrimer‐functionalized graphene oxide for C‐C cross‐coupling reactions is reported. Pd@MGO‐D‐NH2 has been synthesized by incipient wet impregnation method. The structure of the catalyst was thoroughly characterized by a set of analytical techniques such as TEM, BET, SEM/EDS, FTIR, and elemental mapping analysis. Then, the catalytic activity of the catalyst was scrutinized for promoting sonogashira C‐C coupling reaction. The results manifested that Pd@MGO‐D‐NH2 was able to catalyze the coupling reaction to obtain high coupling yields in short reaction time. The results of present work are hoped to aid the development of new class of heterogeneous catalysts as the high performance candidate for industrial applications. 相似文献
4.
《Journal of Coordination Chemistry》2012,65(13):2279-2293
AbstractA hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching. 相似文献
5.
A number of novel benzimidazole salts were synthesized and their structures were determined using 1H NMR, 13C NMR and infrared spectroscopic techniques and elemental analysis. A catalyst system consisting of Pd(OAc)2 and copper nanoparticles in the presence of Cs2CO3 and incorporating the novel benzimidazole salts in poly(ethylene glycol) solvent significantly improved the yields of Sonogashira reactions between aryl halides and phenylacetylene under microwave irradiation in 10 min. 相似文献
6.
Abdolghafar Abolhosseini Shahrnoy Ali Reza Mahjoub Sudabeh Shokrollahi Nasim Ezzati Kristiane Elsner Christoph T. Koch 《应用有机金属化学》2020,34(7):e5645
In this study, a step-by-step method for the synthesis of platinum nanoparticles and copper(I) complex supported on mesoporous silica hollow spheres (Pt-MSHSs-Cu) is introduced. Scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption–desorption, energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, and elemental and thermogravimetric analyses were applied for characterization of the surface, structure, size, phase composition, and morphology of the synthesized materials. The characterized material, Pt-MSHSs-Cu, was used as an efficient and heterogeneous catalyst in the Sonogashira coupling reaction under different reaction conditions. In comparison with MSHSs, Cu(I)-functionalized MSHSs (MSHSs-Cu), and Pt-MSHSs samples, the Pt-MSHSs-Cu catalyst exhibited significantly increased catalytic performance with 91.50% yield. Therefore, the results obtained suggested a synergistic effect derived from platinum nanoparticles, MSHSs substrate, and copper(I) complex, which enhanced the rate of the Sonogashira coupling reaction. 相似文献
7.
Palladium immobilized on amidoxime‐functionalized magnetic Fe3O4 nanoparticles: a highly stable and efficient magnetically recoverable nanocatalyst for sonogashira coupling reaction 下载免费PDF全文
Hojat Veisi Alireza Sedrpoushan Behrooz Maleki Malak Hekmati Masoud Heidari Saba Hemmati 《应用有机金属化学》2015,29(12):834-839
We describe the synthesis of a novel Fe3O4/amidoxime (AO)/Pd nanocatalyst by grafting of AO groups on Fe3O4 nanoparticles and subsequent deposition of Pd nanoparticles. Prior to grafting of AO, the 2‐cyanoethyl‐functionalized Fe3O4 nanoparticles prepared through combining 2‐cyanoethyltriethoxysilane and Fe3O4 were treated with hydroxylamine. The AO‐grafted Fe3O4 nanoparticles were then used as a platform for the deposition of Pd nanoparticles. The catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies, vibrating sample magnetometry, wavelength‐ and energy‐dispersive X‐ray spectroscopies and inductively coupled plasma analysis. Fe3O4/AO/Pd is novel phosphine‐free recyclable heterogeneous catalyst for Sonogashira reactions. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
A nano tetraimine Pd(0) complex catalyst was successfully used as an efficient heterogeneous catalyst for the phosphine‐free palladium‐catalysed Suzuki coupling reaction in water at 80 °C. This nano tetraimine Pd(0) complex was also used for copper‐free Sonogashira reaction in dimethylformamide at 100 °C. The catalyst was easily recovered from the reaction mixture by centrifugation and reused for at least six cycles without any significant loss in its catalytic activity. Analysis of the reaction mixture using inductively coupled plasma analysis showed that leaching of palladium from the catalyst was negligible. The reactions can be performed efficiently for aryl iodides, bromides and also chlorides. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
Mingzhong Cai Qiuhua Xu Pingping Wang 《Journal of molecular catalysis. A, Chemical》2006,250(1-2):199-202
A novel MCM-41-supported sulfur palladium(0) complex was conveniently prepared from commercially available and cheap γ-mercaptopropyltriethoxysilane via immobilization on MCM-41, followed by reacting with palladium chloride and then the reduction with hydrazine hydrate. This complex exhibited excellent performance in Sonogashira coupling reaction. 相似文献
10.
《应用有机金属化学》2017,31(8)
This article focuses on a room temperature copper‐free Sonagashira cross‐coupling reaction in ethanol, catalysed by palladium nanoparticles homogeneously deposited on reduced graphene oxide. The catalyst showed efficient catalytic activity towards the said coupling reaction, and was well characterized using various techniques, and could be reused up to six times with almost constant yield of the desired product. The attractions of this protocol are that the reaction completes within short reaction time under ligand‐ and copper‐free conditions and it avoids harsh reaction conditions. 相似文献
11.
Palladium supported magnetic nanoparticle (Pd@Fe3O4/AMOCAA) was easily prepared in the presence of Scrophularia striata extract and fully characterized by FT-IR, SEM, VSM, TEM, TGA, XRD and EDAX. It was successfully employed as an easily separable and reusable effective heterogeneous catalyst classical Suzuki and Sonogashira cross-coupling reaction. Sustainability of the methodology was reserved by easy recovery of the catalyst using an external magnet and reusing it for 7 times without appreciable loss of its catalytic activity. 相似文献
12.
13.
Preparation of PVC-supported Pd nanoparticles through the reduction of PdCl2 by a non-toxic and eco-friendly route, employing sodium formate and NaOH in ethanol–water system has been described. The prepared PVC supported Pd nanoparticles were employed as catalyst in the cross coupling reactions, that is, Heck and Sonogashira reactions in water medium to afford the respective products in good to excellent yields. 相似文献
14.
《应用有机金属化学》2017,31(8)
Palladium‐supported catalysts are complex assemblies with a challenging preparation. Minor changes in their preparation conditions can affect the activity, selectivity and lifetime of these catalysts. PdCuFe nanoparticle (NP) thin films were supported on reduced graphene oxide (RGO) by the reduction of the organometallic complex [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), and [Cu(acac)2] and [Fe(acac)3] (acac = acetylacetonate) complexes at a toluene–water interface. We have investigated the application of the liquid–liquid interface method for preparing ultrathin films of catalysts and have evaluated the catalytic activity of the prepared NPs for the Sonogashira coupling reaction in micelle media. Also, we have investigated the effect of the addition of iron on the morphology, size and catalytic activity of PdCu/RGO NPs. Our study shows that both of the prepared catalysts (PdCu/RGO and PdCuFe/RGO) are efficient and recoverable catalysts for the Sonogashira carbon–carbon coupling reaction. This method has advantages compared to other routes, such as short reaction times, high to excellent yields, facile and low‐cost method for the preparation of the catalysts, and easy separation and reusability of the catalysts. 相似文献
15.
Kalicharan Chattopadhyay 《Tetrahedron letters》2009,50(26):3164-957
Palladium nanoparticles supported on different shapes of nanocrystalline CuO are prepared by the treatment of Cu(NO3)2 and Pd(OAc)2 in polyethylene glycol (PEG-6000). The shapes of the CuO/Pd composite are dependent on the amount of PEG used. Suzuki coupling was catalyzed efficiently by the oval-shaped material, whereas the rod shape facilitates the cyanation reaction. The CuO/Pd catalyst is recovered and reused for subsequent Suzuki reactions; however, cyanation poisons the catalyst for further use. Both these reactions are very clean and high yielding. 相似文献
16.
Yan-Bing Wang Yan-Xiao Liu Zhi-Hui Zhu Xue-Mei Zhao Bing Song Xinju Zhu Xin-Qi Hao 《Journal of Saudi Chemical Society》2019,23(1):104-110
A series of platinum and palladium pincer complexes supported by achiral 1,3-bis(2′-imidazolinyl)benzene-based NCN ligands have been prepared via direct C2 metalation. Meanwhile, ligand precursor 3b and Pt(II) complex 4b were characterized by crystallographic studies, which reveals that the platinum atom in 4b adopts a distorted-square-planar geometry. The Pd(II) pincer complexes 5b was found to be an efficient catalyst for Suzuki cross-coupling reaction of aryl bromides and phenylboronic acid under air. In the presence of 0.5?mol% of Pd(II) 5b in DMF/K3PO4·3H2O for 8?h, the corresponding biaryl products could be obtained in 24–99% yields. 相似文献
17.
Pd nanoparticles immobilized on PNIPAM–halloysite: highly active and reusable catalyst for Suzuki–Miyaura coupling reactions in water 下载免费PDF全文
Myeng Chan Hong Hyunseok Ahn Myung Chan Choi Yongwoo Lee Jongsik Kim Hakjune Rhee 《应用有机金属化学》2014,28(3):156-161
Poly(N‐isopropylacrylamide)–halloysite (PNIPAM‐HNT) nanocomposites exhibited inverse temperature solubility with a lower critical solution temperature (LCST) in water. Palladium (Pd) nanoparticles were anchored on PNIPAM‐HNT nanocomposites with various amounts of HNT from 5 to 30 wt%. These Pd catalysts exhibited excellent reactivities for Suzuki–Miyaura coupling reactions at 50–70 °C in water. In particular, Pd anchored PNIPAM/HNT (95:5 w/w ratio) nanocomposites showed excellent recyclability up to 10 times in 96% average yield by simple filtration. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
Bahram Bahramian Mohammad Bakherad Ali Keivanloo Zohre Bakherad Behzad Karrabi 《应用有机金属化学》2011,25(6):420-423
We report here our observation that, using appropriate reaction conditions, the Sonogashira reaction can be performed without the need for copper catalyst and solvent. Our approach involves the use of diatomite‐supported palladium(II) salophen complex as a catalyst and triethylamine as a base. The methodology works, to differing extents, for aryl iodides and bromides. This heterogeneous catalyst can be reused at least five times without any decrease in activity. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
19.
In this work, graphene oxide was functionalized with chitosan (GO‐Chit) followed by a simple approach for immobilization of palladium nanoparticles onto a chitosan grafted graphene oxide surface. The Pd‐nanocomposite (GO‐Chit‐Pd) was characterized using Transmission Electron Microscopy (TEM), Fourier transforms infrared spectroscopy (FT‐IR), and X‐ray diffraction (XRD) measurements. The catalytic activity of the prepared heterogeneous graphene oxide functionalized chitosan‐palladium (GO‐Chit‐Pd) was investigated in term of C‐N coupling reaction (Buchwald‐Hartwig amination reaction of aryl halides) yielding products of N‐arylamines. The easy purification, convenient operation, and environmental friendliness, combined with a high yield, render this method viable for use in both laboratory research and larger industrial scales. Studying the reusability of the catalyst in this work showed that it could be reused for five times without obvious loss in catalytic activity. 相似文献
20.
Kheirollah Nouri Mitra Ghassemzadeh Farshid Mohsenzadeh Maryam Afsharpour 《应用有机金属化学》2020,34(9):e5771
Fuberidazole has been successfully immobilized onto nano-Fe3O4 supported (3-chloropropyl)trimethoxysilane (3-CPTS) leading to a novel functionalized magnetic nanoparticle (FB/MNP). The Pd(0) complex, Pd-FB/MNP, was prepared by grafting Pd (OAc)2 on FB/MNP and subsequent reduction of a synthesized Pd (II) complex using NaBH4. Pd-FB/MNP has been characterized by FT-IR, SEM, TGA, XRD, ICP, EDS, BET and VSM. The Pd(0) complex proved to be an efficient phosphine- and halide-free recyclable heterogeneous catalyst for Suzuki as well as for Stille C-C coupling reactions showing high catalytic activity (up to 98%). Its catalytic activity in both reactions has been studied in PEG-400 as a green solvent. Besides, the selectivity of aryl iodide and aryl bromide over aryl chloride is observed during the C-C coupling reaction. The catalyst could be recovered easily from the reaction mixture using an external magnet device and recycled several times without considerable loss in activity. Additionally, the results of a palladium leaching test of the nano-catalyst demonstrate that no leaching of Pd took place during the C-C coupling process making the procedure environmentally friendly. 相似文献