首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical investigation of the flow and behaviour of properties of a water-based Al2O3-nanofluid inside a two-sided lid-driven inclined non-uniformly heated and concentrated porous cavity is made in this paper. The focus of the study is on determining how the buoyancy ratio and the inclination angles influence the unsteady double-diffusive natural convection in a cavity filled with a porous medium, and with non-uniform boundary conditions. We further consider different nanoparticle volume fractions of the nanofluid. It is assumed that the left and right vertical walls are insulated, while the bottom wall is heated and concentrated non-uniformly and the top wall maintained at a constant cold temperature. The top and bottom walls move from left to right and right to left with constant speed, respectively. The governing equations are solved numerically using a staggered grid finite-difference method for streamlines, isotherms, iso-concentrations, average Nusselt number and average Sherwood number for various values of nanoparticle volume fraction, inclination angle and buoyancy ratio. The change in the flow, temperature and concentration profile patterns with respect to time is depicted and described. The results are compared with previously published work and excellent agreement has been obtained.  相似文献   

2.
The proper process of applying heat to many technological devices is a significant challenge. There are many nanofluids of different sizes used inside the system. The current study combines this potential to improve convection effects, considering numerical simulations of natural convection using Cu/water nanofluids in a square enclosure with bottom blocks embedded in baffles. The enclosure consists of two vertical walls with isothermal boundary conditions; the left wall is the sinusoidal heat source, whereas the right wall is cooled. The investigations dealt with the influences of nanoparticle concentration, Rayleigh number, baffle length, and thermal conductivity ratioon isotherms, stream functions, and average Nusselt number. The results present that, when the Rayleigh number rises, the fluid flow velocity increases, and the heat transfer improves. Furthermore, the baffle length case (Lb = 0.3) provides higher heat transfer characteristics than other baffle height cases.  相似文献   

3.

Nonlinear mixed convection of heat and mass in a stagnation-point flow of an impinging jet over a solid cylinder embedded in a porous medium is investigated by applying a similarity technique. The problem involves a heterogenous chemical reaction on the surface of the cylinder and nonlinear heat generation in the porous solid. The conducted analysis considers combined heat and mass transfer through inclusions of Soret and Dufour effects and predicts the velocity, temperature and concentration fields as well as the average Nusselt and Sherwood number. It is found that intensification of the nonlinear convection results in development of higher axial velocities over the cylinder and reduces the thickness of thermal and concentration boundary layers. Hence, consideration of nonlinear convection can lead to prediction of higher Nusselt and Sherwood numbers. Further, the investigation reveals that the porous system deviates from local thermal equilibrium at higher Reynolds numbers and mixed convection parameter.

  相似文献   

4.

Development of various electronic devices demands to create effective cooling complexes. The present paper deals with computational analysis of mixed convection cooling of heat-conducting and heat-generating element located inside an alumina–water nanofluid enclosure with upper moving wall. Usage of upper moving wall, nanofluid and cooling vertical walls allows to create the effective cooling process. Analysis has been performed numerically using the Oberbeck–Boussinesq equations. The effects of nanoparticles concentration, heat source location and upper wall velocity on flow structures, heat exchange and entropy generation have been investigated. It has been ascertained that effective cooling of the heated element occurs for high Reynolds number and central position of the heat-generating element.

  相似文献   

5.
《印度化学会志》2023,100(2):100913
Owing to contribution of thermo-diffusion phenomenon in various engineering and industrial frame works, scientists have presented some exclusive investigations on this topic. In current research, the thermos-diffusion prospective of second grade material accounted by a moving cylinder have been predicted. The applications of Soret and Dufour effects based on the thermos-diffusion phenomenon is evaluated. The magnetic force and viscous dissipation effects are presented for the current flow model. Additionally, the improvement in thermal transport of viscoelastic fluid is suggested with radiative phenomenon. The convective boundary constraints are used to report the thermos-diffusion phenomenon. The system based on dimensionless form is obtained with interaction of new variables. The shooting technique is used for numerical observations by using MATLAB software. The physical impact of phenomenon in view of parameters is graphically attributed. It has been noted that increasing velocity profile is results due to curvature parameter and viscoelastic parameter. The enhancement in thermal profile is noted due to Dufour number and Eckert number.  相似文献   

6.
The influence of rotation and electric field on the onset of double-diffusive convection in rotating anisotropic couple stress fluid embedded porous media, which is caused by the combined action of external AC electric field and heating from below, has been investigated in this study. The associated equations were solved using the normal mode technique in conjunction with the modified Brinkman model, with free-free and rigid-rigid boundary conditions. Solute concentration and temperature are treated as independent parameters for the two diffusive components. Finally, neutral stability curves have been sketched to show how various flow parameters affect neutral stability. It is noticed that electric field has destabilizing effect on thermodynamic convection while rotation couple stress parameters have a tendency to stabilize the physical system under consideration. Furthermore, heat and mass transport have been studied using non-linear analysis in unsteady case. It is found that rotation, couple stress, porous parameters has influence of declining heat and mass transport while electric and anisotropic parameters have effect of boosting up heat and mass transport.  相似文献   

7.

This investigation addresses bioconvection of oxytactic microorganisms in a porous square enclosure by thermal radiation impact. The bioconvection flow and heat transfer in porous media are formulated based on Darcy model of Boussinesq approximation. Appropriate transformations lead to the non-dimensionalized governing partial differential equations. Galerkin finite element method for the resulting equations is computed. The role of relevant parameters on the streamlines, isotherms, isoconcentrations of oxygen and microorganisms and average Nusselt number is analysed in the outputs. It is revealed that the flow intensity of bioconvection is pronounced with larger Rayleigh number and reduced with radiation parameter. Furthermore, the temperature distribution is affected significantly with Rayleigh number. Radiation parameter serves to fasten the heat transfer in the enclosure. Oxygen density is enhanced with Rayleigh number and radiation parameter. The profile of motile isoconcentrations is boosted with Rayleigh number. The stability of microorganisms is improved with the radiation parameter.

  相似文献   

8.
This paper is devoted to the study of natural convection in a rectangular slender differentially heated inclined cavity. Results from the stability analysis of the basic flow to transversal and longitudinal disturbances are compared to numerical predictions of different types of transitions to multicellular flow in two-dimensional closed geometries.  相似文献   

9.
The mass transfer in the electrolyte solution with three types of ions in the electrochemical cell of square section with vertical electrodes is studied. The mathematical model of the process involves the Navier-Stokes equations in the Boussinesq approximation, the equations of ionic transfer of electrolyte components, which is caused by diffusion, convection, and migration, and the condition of electroneutrality. It is shown that this problem corresponds to a special case of thermosolutal convection with regard for thermodiffusion (the Soret effect), where the cell boundaries are permeable to an impurity and the flux of impurity through the boundary is proportional to the heat flux. Using the numerical simulation, the distributions of concentration of ions, solution density, local and average mass-transfer rates are studied. The approximate analytical equations for the limiting current are obtained for typical electrochemical systems.  相似文献   

10.
《印度化学会志》2022,99(11):100762
In the current investigation, it is anticipated to examine the influence of heat absorption and radiation on an unsteady transient MHD heat and mass transfer natural convective flow of an optically thin non-Grey Newtonian fluid through an abruptly started infinite vertical porous plate with ramped wall temperature and plate velocity in the presence of Soret and chemical reaction of the first order is solved precisely. Using the similarity variables, the governed PDE's are converted into dimensionless governing equations and they are solved numerically by employing the finite element technique. Numerical calculations and graphs are used to illustrate the important features of the solution on fluid flow velocity, heat, and mass transfer characteristics under different quantities of parametric circumstances entering into the problem. Moreover, we computed the physical variables such as the coefficient of drag force, rate of heat, and mass transfer. The findings indicate that when the thermal radiation parameter increases, the thermal boundary layer becomes thinner. To establish the veracity of our present results, we compared them to previously published research and found substantial concordance.  相似文献   

11.

The present work examines the influence of magnetohydrodynamic field on natural convection phenomena inside a porous square enclosure with a pair of embedded hot circular cylinders. Numerical investigations are performed to understand the effects of interspacing distance between the embedded cylinders, Hartmann number, Rayleigh number and Darcy number on the thermal transport process and the total irreversibility generation. It is observed that the isotherm distribution is strongly affected by the presence of magnetic field although the distribution of streamlines remains independent of the strength of magnetic field. This underlines the fact that magnetic field strongly influences the heat transfer process and entropy generation characteristics. It reveals that the natural convection is suppressed in the presence of a higher magnetic field as evident from the reduction in Nusselt number. It is observed that an increase in the spacing between the cylinders increases the heat transfer rate, and moreover, the effect of the magnetic field on heat transfer is more pronounced at higher interspacing distance between the embedded cylinders. The heat transfer rate increases significantly with the increase in the permeability of the medium. The entropy generation rate is independent of the strength of applied magnetic field. Further, the contribution of the entropy generation owing to friction is found to be negligible in total irreversibility obtained at lower values of Rayleigh number irrespective of Darcy number. However, the contribution of irreversibility owing to heat transfer is found to be minimal at higher values of Rayleigh number.

  相似文献   

12.
The thermal energy transport analysis with chemotaxis in the free convective flow of viscous nanofluid over stretchable vertically inclined heated sheet is addressed in this article. The fluid forced and free convection motion is investigated and discussed with physical reasoning. The fluid also contains microorganism heavy-bottom species, and their chemotactic motion is studied. In the light of Buongiorno model, the impact of Brownian motion and thermophoresis slip mechanism on thermal conduction in the nanofluid is analyzed. The work is based on the similarity analysis of governing partial differential equations (PDEs) which lead to non-dimensional ordinary differential equations (ODEs). The solution of resulting flow and heat equations is computed via bvp4c technique. The outcomes are represented in graphical abstract. It is noted that free convective flow field increases near to the surface of sheet then it decays to free stream exponentially. Higher magnitude of thermophoretic force boost up the thermal energy transport in nanofluid flow. The Brownian motion enhances temperature profile and lower down the convection velocity. Chemotaxis motion of species in nanofluid is increasing function of bioconvective Peclet number.  相似文献   

13.
The onset of Rayleigh-Marangoni convection in a vertical annulus heated from below is investigated using linear stability analysis. The results of the present study also show the pattern transitions as a function of scaled gap width and aspect ratio. It is concluded that Marangoni convection can change the fluid pattern in an otherwise pure Rayleigh problem. It is also concluded that the gap width cannot significantly change the Marangoni effect as it is essentially the depth of liquid and Biot number that play a dominant role.  相似文献   

14.

In the present study, the exact solution of a nanofluid flow and mixed convection within a vertical cylindrical annulus with suction/injection, which is adjacent to the radial magnetic field, is presented with regard to the motion of cylinders’ walls. The impact of Brownian motion and shape factor on the thermal state of CuO–water nanofluid is also considered. The influence of such parameters as Hartmann number, mixed convection parameter, suction/injection, volume fraction of nanoparticles and motion of cylinders’ walls on flow and heat transfer is probed. The results show that the shape of the nanoparticles could change the thermal behavior of the nanofluid and when the nanoparticles are used in the shape of a platelet, the highest Nusselt number is obtained (about 2.5% increasement of Nusselt number on internal cylinders’ wall comparison to spherical shape). The results shed light on the fact that if, for example, the external cylinder is stationary and the internal cylinder moves in the direction of z axis, the maximum and minimum heat transfer take place on the walls of internal and external cylinders, respectively (for η?=?300, about 15% increasement of Nusselt number on internal cylinders’ wall). Furthermore, the enhancement of radius ratio between two cylinders increases the rate of heat transfer and decreases the shear stress on the internal cylinder’s wall.

  相似文献   

15.
Mixed convection flow, heat, and mass transfer about an isothermal vertical flat plate embedded in a fluid-saturated porous medium and the effects of viscous dissipation and thermophoresis in both aiding and opposing flows are analyzed. The similarity solution is used to transform the problem under consideration into a boundary value problem of coupled ordinary differential equations, which are solved numerically by using the shooting method. Numerical computations are carried out for the non-dimensional physical parameter. The results are analyzed for the effect of different physical parameters such as thermophoretic, mixed convection, inertia parameter, buoyancy ratio, and Schmid number on the flow, heat, and mass transfer characteristics. Two cases are considered, one corresponding to the presence of viscous dissipation and the other to the absence of it.  相似文献   

16.

This paper investigates the combined effects of using nanofluid, a porous insert and corrugated walls on heat transfer, pressure drop and entropy generation inside a heat exchanger duct. A series of numerical simulations are conducted for a number of pertinent parameters. It is shown that the waviness of the wall destructively affects the heat transfer process at low wave amplitudes and that it can improve heat convection only after exceeding a certain amplitude. Further, the pressure drop in the duct is found to be strongly influenced by the wave amplitude in a highly non-uniform way. The results, also, show that the second law and heat transfer performances of the system improve considerably by thickening the porous insert and decreasing its permeability. Yet, this is associated with higher pressure drops. It is argued that the hydraulic, thermal and entropic behaviours of the system are closely related to the interactions between a vortex formation near the wavy walls and nanofluid flow through the porous insert. Viscous irreversibilities are shown to be dominant in the core region of duct where the porous insert is placed. However, in the regions closer to the wavy walls, thermal entropy generation is the main source of irreversibility. A number of design recommendations are made on the basis of the findings of this study.

  相似文献   

17.
《印度化学会志》2023,100(1):100837
The heat transfer phenomenon subject to thermos-diffusion effects convey important applications in the heating processes, extrusion systems, chemical processes and various engineering systems. The objective of current work is to observe the contribution of Soret and Dufour effects in oscillating shield for cross diffusion flow. The perpendicular shield with oscillating motion induced the flow. The magnitude of oscillations is assumed to be small so that laminar flow due to oscillating shield has been resulted. The motivations for addressing the thermos-diffusion phenomenon due to oscillating of shield are due to applications in oscillatory pumps, moving surface, metal detectors, power systems etc. The dimensionless problem is obtained via introducing the appropriate set of variables. The numerical outcomes are suggested by using the most interesting explicit finite difference scheme. The physical illustration for flow parameters is presented. Moreover, the aspect of physical quantities involving the flow are graphically reported.  相似文献   

18.
A mesoscopic study of natural convection due to MWCNT-Fe3O4/Water hybrid nanofluid is conducted utilizing the Lattice Boltzmann Method. The test fluid is filled in a differentially heated rectangular enclosure. Effects of aspect ratio in the range of 0.5–2.0, Rayleigh number varying from 103 to 105 and nanocomposite volume fraction on heat and fluid flow characteristics and entropy generation have been illustrated. It is observed that the mean Nusselt number rises with the increase in Rayleigh number, while it falls as the aspect ratio increases. However, the mean Nusselt number enhances with the increase in MWCNT-Fe3O4 volume fraction up to 0.001. On further increasing the volume fraction, the mean Nusselt number shows either no significant rise or deterioration for the case of MWCNT-Fe3O4 nanocomposite. The dimensionless entropy generation number rises with the increase in the Rayleigh number. However, it falls with an increase in aspect ratio and dimensionless temperature difference. Interestingly in the case of increasing nanoparticle loading fraction, entropy generation number augments first, attains a maximum at 0.001 ?vol fraction of nanocomposite, and then it decreases. Nevertheless, at the low Rayleigh number, it keeps on rising with an increase in nanocomposite volume fraction. The best thermal performance is obtained for the cavity of 0.5 aspect ratio. A correlation for the mean Nusselt number is proposed.  相似文献   

19.
Journal of Thermal Analysis and Calorimetry - Mixed convection in vertical parallel channels is analyzed with the viscous fluid sandwiched between nanofluids within porous material filled in a...  相似文献   

20.
The problem of anodic dissolution of a plane vertical tungsten electrode in alkaline solutions under conditions of natural convection is solved. Equations for the local (height-dependent) and average limiting currents of tungsten dissolution and the distribution of boundary layer thickness over the electrode height are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号