首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The development of three-dimensional (3-D) scaffolds with highly open porous structure is one of the most important issues in tissue engineering. A novel nanocomposite scaffold of gelatin (Gel), hyaluronic acid (HA), and nano-bioactive glass (NBG) was prepared by blending NBG with a Gel and HA solution followed by lyophilization. The effects of NBG content on the properties of the Gel-HA/NBG composite scaffolds, including the morphologies, porosity, compressive strength, swelling behavior, cell viability and alkaline phosphatase (ALP) activity, were investigated. Porous composite scaffolds with interconnected pores were obtained and the pores became cylindrical with increasing NBG content. The porosity percent and swelling ability decreased with increasing NBG content; however, the compressive strength, cell viability and ALP activity were enhanced. All the results showed the addition of NBG particles can improve the physicochemical and biological properties and the Gel-HA/NBG composite scaffolds exhibited good potential for tissue engineering applications.  相似文献   

2.
Abstract

Polymeric/ceramic composite scaffolds that are biocompatible and biodegradable are widely used for tissue engineering applications. In this work a series of poly(L-lactide-co-glycolide-co-ε-caprolactone)/nano-biaoactive glass-nano-β-tricalcium phosphate composite scaffolds were successfully fabricated and the influences of the inorganic content and freezing temperature on the physical properties were studied. The composite scaffolds with various inorganic contents showed an interconnected pore structure with irregular shapes. The composite scaffolds had a porosity that was reduced with increasing inorganic content and decreasing freezing temperature. The incorporation of inorganic fillers and decreasing freezing temperature improved the mechanical properties of the hybrid scaffolds. By appropriate control of these two factors (10.0?wt% content of NBAG and β-TCP with freezing at ?30?°C) a suitable composite scaffold was prepared as a potential bone tissue engineering implant.  相似文献   

3.
Three-dimensional biodegradable porous scaffolds play an important role in tissue engineering. A new polymer based on maleated poly(lactic-co-glycolic acid) (MPLGA) was synthesized using direct melt copolymerization from maleic anhydride (MAH), D, L-lactide, and glycolide monomers. MPLGA porous biodegradable scaffolds were prepared by a solution-casting/salt-leaching method. The effects of content and size of the NaHCO3 porogen on the compressive strength of the MPLGA scaffolds were investigated, and the effect of content of the porogen on the porosity of the MPLGA scaffolds was also studied. The results indicated that MAH was grafted onto PLGA successfully and MPLGA scaffolds with interconnective and open pore structure were obtained. Increasing content of NaHCO3 porogen resulted in an increase of porosity and decrease of the compressive strength of the MPLGA scaffolds with the compressive strength of the scaffolds also decreasing with increasing porogen size.  相似文献   

4.
J. Zhao 《Applied Surface Science》2010,256(14):4586-4590
Polycaprolactone (PCL)-coated porous hydroxyapatite (HA) composite scaffolds were prepared by combining polymer impregnating method with dip-coating method. Three different PCL solution concentrations were used in dip-coating process to improve the mechanical properties of porous HA scaffolds. The results indicated that as the concentration of PCL solution increases the compressive strength significantly increased from 0.09 MPa to 0.51 MPa while the porosity decreased from 90% to 75% for the composite scaffolds. An interlaced structure was found inside the pore wall for all composite scaffolds due to the penetration of PCL. The porous HA/PCL composite scaffolds dip-coated with 10% PCL exhibited optimal combination of mechanical properties and pore interconnectivity, and may be a potential bone candidate for the tissue engineering applications.  相似文献   

5.
In order to develop a scaffolding material for tissue regeneration, porous matrices containing varying composites of collagen and hyaluronic acid (HA) (from 1:0 to 0:1) were fabricated using a freeze-drying method. The effect of the composition on the morphology, hydrophilicity, swelling behavior, mechanical properties, and in vitro cytotoxicity was investigated. The results showed that all the scaffolds had an interconnected pore structure with sufficient pore size for use as a support for the growth of fibroblasts. The addition of HA improved the swelling property, but reduced the compressive strength. The contact angle decreased with increasing HA content. In in vitro cytotoxicity tests using fibroblastic cells, the collagen/HA scaffolds showed no toxicity. All these results suggest that collagen/HA composite scaffolds are a potential candidate for tissue engineering scaffolds.  相似文献   

6.
There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO2-CaO-P2O5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.  相似文献   

7.
Hydrogel scaffolds based on poly(vinyl alcohol) (PVA) collagen films were prepared by a chemical cross-linking method. The effects of the contents of PVA and cross-linker on compressive strength and swelling ratio were studied, and the effect of the pH value of the immersion medium on the swelling ratio was also investigated. The results showed that the introduction of PVA improved the compressive strength of PVA/collagen hydrogel, and the swelling ratio of the hydrogel scaffold increased with increasing PVA content in the blends. With increasing cross-linker content, the swelling ratio decreased; however, the compressive strength increased. The swelling ratio of PVA/collagen scaffold increased when pH was decreased. In conclusion, swelling ratio and compressive strength in PVA/collagen blends can be controlled by variation of their contents, cross-linking agent content, and pH value.  相似文献   

8.
Chitosan-gelatin (CG) scaffolds were fabricated with glutaraldehyde as a cross-linker by vacuum freeze-drying. Mixtures of different volumes of chitosan and glutaraldehyde were considered. Morphology, porosity, density, and water absorbency of the scaffolds were studied. Both tensile and compressive properties of the scaffolds were tested. In addition, cellular adherence, proliferation, and morphology on the scaffolds were tested to evaluate the compatibility. It was found that porosity, density, water absorbency, and mechanical properties of CG scaffolds changed with the variation of chitosan or GA content. The adequate adherence, proliferation, and morphology of HaCaT type cells on the scaffolds showed that these scaffolds can be used as carriers for culturing HaCaT. The CG scaffolds, particularly those with chitosan-gelatin volume ratios of 1:1 and adding 6% or 8% volume of 0.25 wt% GA solution, were more suitable than the others through comparing the above properties and could be promising candidates for engineering skin tissue.  相似文献   

9.
Abstract

The technique of thermally induced phase separation (TIPS) is favorable for the fabrication of a porous scaffold due to a number of advantages. In this work the poly(L-lactide-co-glycolide-co-ε-caprolactone) (PLLGC) terpolymer was synthesized by melt copolymerization and porous scaffolds thereof from its solution in 1,4-dioxane were fabricated by using the TIPS method. The effects of fabrication parameters, including polymer concentration and freezing temperature, on the morphology, pore size and mechanical properties were studied. The results showed that the average pore size of the PLLGC porous scaffold increased with a decrease in PLLGC concentration and the pore size resulting from freezing at 4?°C (about 20–100?μm) was significantly larger than for other samples (20–50?μm) frozen at lower temperatures. The porosity of the scaffolds decreased with increasing PLLGC concentration or decreasing freezing temperature. On the other hand, the compressive strength of the scaffolds increased with the increase of PLLGC concentration or the decrease of freezing temperature, as would be expected. The present results can be applied in design to control the processing parameters of TIPS for a scaffold with desired pore morphology.  相似文献   

10.
Biomedical scaffolds should be designed to optimize their inter-microstructure to enable cell infiltration and nutrient/waste transport. To acquire these properties, several structural parameters, such as pore size, pore shape, porosity, pore interconnectivity, permeability, and tortuosity are required. In this study, we explored the effect of tortuosity on the viable cell proliferation and mineralization of osteoblast-like-cells (MG63) in polycaprolactone scaffolds. For analysis, we designed four different scaffolds of various tortuosities ranging from 1.0 to 1.3 under the same porosity (56?%) and 100?% pore interconnectivity. The pore size of the scaffolds was set as 150 and 300?μm, and a mixture of these sizes. We found that despite the porosity being same, the elastic modulus was dependent on the pore size of the scaffolds due to the distributed stress concentration. In addition, the relative water movement within scaffolds was also related to the internal microstructure. Cell viability and Ca2+ deposition of the cell-seeded scaffolds showed that the proliferation of viable cells and mineralization in the scaffolds with appropriate tortuosity (1.2) was relatively high compared to those of the scaffolds displaying low (1.05 and 1.1) or high (1.3) tortuosity. Our findings indicated that the internal microstructure of the scaffolds may influence not only the physical properties, but in addition the cellular behavior.  相似文献   

11.
《Solid State Ionics》2006,177(7-8):709-713
A novel composite microporous polymer electrolyte based on poly(vinylidene fluoride), poly(ethylene oxide), and microporous molecular sieves ZSM-5 (denoted as PVDF–PEO/ZSM-5) was prepared by a simple phase inversion technique. PEO can obviously improve the pore configuration, such as pore size, porosity, and pore connectivity of PVDF-based microporous membranes, results in a high room temperature ionic conductivity. Microporous molecular sieves ZSM-5 can further improve the mechanical strength of PVDF–PEO blends and form special conducting pathway in PVDF–PEO matrix by absorb liquid electrolyte in its two-dimensional interconnect channels. The high room temperature ionic conductivity combined with good mechanical strength implies that PVDF–PEO/ZSM-5 based composite microporous polymer electrolyte can be used as candidate electrolyte and/or separator material for high-performance rechargeable lithium batteries.  相似文献   

12.
A porous mullite-matrix composite with a bimodal pore structure has been prepared by a freeze casting route using water/coal fly slurry system. The top and bottom parts of the sintered freeze cast body consisted of solid particles and micropores, which were irregularly distributed. However, the middle section was made up of small lamellar pores and porous ceramic walls, aligned along the solidification direction. The porosity of mullite composites was in the range 67-55% after sintering at 1300-1500 °C. The addition of 3Y-ZrO2 reduced the porosity, especially material in sintered at 1500 °C due to relatively high densification. The compressive strength of the porous composite with 10 wt% 3Y-ZrO2 addition, sintered at 1500 °C exhibited a maximum value of ∼41 MPa.  相似文献   

13.
In-vitro degradation behaviors of composite scaffold materials composed of 1,4-butanediamine modified poly(lactide-co-glycolide) (BMPLGA), nanobioactive glass (NBG) and β-tricalcium phosphate (β-TCP) were systematically investigated in phosphate-buffered solution (PBS) at 37?°C. The properties of the BMPLGA/NBG-β-TCP and BMPLGA scaffolds, including the changes of pH value, mass, water uptake, compressive strength and molecular mass, were investigated as a function of degradation time. The results showed that the introduction of the NBG and β-TCP particles played important roles in the degradation of BMPLGA matrix. The degradation rate of the BMPLGA/NBG-β-TCP scaffolds was slower than that of the BMPLGA scaffolds.  相似文献   

14.
The classic solvent casting/particulate leaching method to fabricate PCL scaffolds was improved by using a centrifugal technology, a direct bonding process in preparing salt matrices and a technology of vacuum treatment under heating in the desolvation process. Series operations of preshaping, centrifuging, casting and desolvating were employed during the scaffold's manufacture. The scaffold's properties were characterized including micro‐structures, pore dimensions, porosity and hydrophilicity. The results show that centrifugal technology can improve the pore uniformity of scaffolds. In the bonding process, well‐interconnected porous structures were formed if water content was between 2~7%. The distribution of pore dimensions was from 10 to 80 μm, and the porosities were about 89%. Generally, the porosities formed by vacuum treatment at high temperature are greater than those formed by vacuum treatment at ambient temperature in the desolvation process. The fabricated porous PCL scaffolds with good elasticity and desired thickness could be a good choice for application in soft tissue engineering.  相似文献   

15.
The aim of this study was to understand and compare the compression deformation behavior of porous metals with random and designed porosity. Direct observation, analysis and quantification of porosity parameters using microcomputed tomography (µCT) enabled the determination of relationship between porosity characteristics and compressive deformation of porous titanium. Porosity and pore size variations before and after deformation showed relatively uniform deformation in the sample with random porosity compared to designed porosity. Strong, continuous and regular arrangement of load-bearing sections in the designed porosity sample imparted higher Young's modulus and 0.2% proof strength than for the random porosity sample. The experimental results clearly showed the dependence of deformation behavior and mechanical properties on pore distribution and continuity of load-bearing cross-section.  相似文献   

16.
Chemically modified silk fibroin (SF) with an enzyme, Proteinase K, has been incorporated into hydroxyapatite (HAp)-based nanocomposite attempting to strengthen the interfacial bonding between the mineral phase and the organic matrix. Particular emphasis is laid on the microstructure and microhardness of the composite along with the crystallographic properties of HAp. The whisker-like HAp crystallites of nanometer size show the preferential self-assembly and anisotropic crystal growth along c-axis. There appears porous microstructure with 70% of open porosity and pore size distribution of 10–115 um in the composite. Attributed to the enzyme modification, the crosslinkage between HAp clusters and SF matrix is improved to form an enhanced three-dimensional network extending throughout the composites and an increase of 35% in microhardness of the composite is achieved as well.  相似文献   

17.
Hydrogels are considered an optimum material for controlled release drug systems and tissue engineering scaffolds since they are tri-dimensional networks. In this work hexamethylene diisocyanate (HMDI), polycaprolactone (PCL) and polyethylene glycol (PEG) were used to prepare polyurethane prepolymers using diethylene glycol (DEG) as a chain-extender. Then the prepolymer was used to fabricate the HMDI/PCL-PEG/DEG polyurethane hydrogels by free radical polymerization using benzoyl peroxide (BPO) as a cross-linking agent. The influences of the ratio of polyol on the contact angle, swelling ratio, morphology and cytotoxicity in-vitro of the HMDI/PCL-PEG/DEG polyurethane hydrogel were investigated. The biological behavior of the polyurethane hydrogels was analyzed by studying the cell behavior using the standard biological MTT (3–4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) test. The Fourier transform infrared (FTIR) spectra results showed that the polyurethane hydrogels were successfully synthesized. The change of the molar the ratio of the polyhydric alcohols (PEG and PCL) played important roles in the swelling degree, the contact angle and the pore size. The HMDI/PCL-PEG/DEG polyurethane hydrogel (PCL/PEG = 1:3) was hydrophilic with many more large pores while the polyurethane hydrogel with PCL/PEG = 3:1 had a dense structure. The fibroblastic cell proliferation improved with decreasing relative PEG content; however, there were insignificant differences (P > 0.05) on all days of observation of the samples with various PEG contents compared with the negative control group. The MTT assays revealed that the cells were able to grow and proliferate quite quickly in the extracts of the HMDI/PCL-PEG/DEG polyurethane hydrogels as well as the extract of the negative control.  相似文献   

18.
《Current Applied Physics》2014,14(8):1105-1115
A novel alginate/chitosan composite scaffold was developed. The composite scaffolds were fabricated at low temperature using a three-axis robot system connected to a micro-dispenser and a core/shell nozzle. The structure of the composite scaffolds included hollow struts; deposited chitosan on the inner walls (core region) of the struts reacted electrostatically with the alginate layer (shell region). The fabricated, highly porous composite scaffolds exhibited excellent mechanical properties and controllable chitosan release, which was closely dependent on the weight fraction of the alginate in the shell region. The tensile strength in the dry state was ∼1.8-fold greater than that of pure alginate scaffold due to the ionic interaction between alginate and chitosan. To determine the feasibility of using the developed scaffold in tissue regeneration applications, in vitro cellular responses were evaluated using osteoblast-like-cells (MG63). The cell proliferation on the composite scaffold was ∼3.4-fold greater than that on the pure alginate scaffold. Alkaline phosphate activity and calcium deposition of the composite scaffold after 14 and 21 days of cell culture were significantly enhanced (1.6- and 1.8-fold greater, respectively) compared with those of the pure alginate scaffold. These results suggested that the alginate/chitosan composite scaffolds with a controlled chitosan release have great potential for use in regenerating various tissues.  相似文献   

19.
Porous hydrogel blends composed of various weight ratios of hyaluronic acid (HA) and gelatin (Gel) were fabricated by a freeze-drying method. The 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) was used as a crosslinker to improve their biostability. The effect of the component and crosslinker content on the morphology, swelling ratio (SR), and mechanical properties were investigated. The results indicated that after chemical crosslinking the hydrogel showed a smoother and denser surface with less pores and a crosssection with smaller pores than that without crosslinking. The crosssection morphologies of the HA/Gel hydrogels changed from a sheet-like appearance to a fiber-like appearance with increasing HA content. The addition of HA improved the swelling property, but reduced the compressive strength. As the crosslinker content increased, the SR decreased; however, the compressive strength of the HA/Gel hydrogels increased. All these results suggest that HA/Gel hydrogel crosslinked by EDC is a potential candidate for tissue engineering scaffolds.  相似文献   

20.
《Composite Interfaces》2013,20(5-6):443-458
The mechanism with which the fiber-matrix interfacial strength exerts its influence on the compressive strength of fiber reinforced composites has been studied by measuring the axial compressive strength of carbon fiber/epoxy resin unidirectional composite strands having different levels of interfacial shear strength. The composite strands are used for experiments in order to investigate the compressive strength which is not affected by the delamination taking place at a weak interlayer of the laminated composites. The interfacial strength is varied by applying various degrees of liquid-phase surface treatment to the fibers. The efficiency of the compressive strength of the fibers utilized in the strength of the composite strands is estimated by measuring the compressive strength of the single carbon filaments with a micro-compression test. The compressive strength of the composite strands does not increase monotonically with increasing interfacial shear strength but showes lower values at higher interfacial shear strengths. With increasing interfacial shear strength, the suppression of the interfacial failure in the misaligned fiber region increases the compressive strength, while at higher interfacial shear strengths, the enhancement of the crack sensitivity decreases the compressive strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号