首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

2.
RuII‐ and RuIII‐substituted α‐Keggin‐type phosphotungstates with a dimethyl sulfoxide (DMSO) ligand, [PW11O39RuIIDMSO]5– ( 1 ) and [PW11O39RuIIIDMSO]4– ( 2 ), were synthesized. Compound 1 was prepared by reaction of [PW11O39]7– with [RuII(DMSO)4]Cl2 in water at 125 °C under hydrothermal conditions and was isolated as a cesium salt. Compound 2 was prepared by reaction of 1 with bromine in water at 60 °C and was isolated as a cesium salt. The compounds were characterized by cyclic voltammetry, elemental analysis, UV/Vis, IR,31P NMR, 183W NMR, 1H NMR, and XANES (Ru K‐edge and L3‐edge)spectroscopic methods. Single crystal structural analysis of 1 revealed that RuII is incorporated in the α‐Keggin framework and coordinated by DMSO through a Ru–S bond. Cyclic voltammetry of 1 indicated that the incorporated RuII‐DMSO is reversibly oxidizable to the RuIII‐DMSO derivative 2 . Compound 1 showed catalytic activity for water oxidation in the presence of cerium ammonium nitrate as an oxidant.  相似文献   

3.
A “metal–ketimine+ArI(OR)2” approach has been developed for preparing metal–ketimido complexes, and ketimido ligands are found to stabilize high‐valent metallophthalocyanine (M? Pc) complexes such as ruthenium(IV) phthalocyanines. Treatment of bis(ketimine) ruthenium(II) phthalocyanines [RuII(Pc)(HN?CPh2)2] ( 1a ) and [RuII(Pc)(HNQu)2] ( 1b ; HNQu=N‐phenyl‐1,4‐benzoquinonediimine) with PhI(OAc)2 affords bis(ketimido) ruthenium(IV) phthalocyanines [RuIV(Pc)(N?CPh2)2] ( 2a ) and [RuIV(Pc)(NQu)2] ( 2b ), respectively. X‐ray crystal structures of 1b and [RuII(Pc)(PhN?CHPh)2] ( 1c ) show Ru? N(ketimine) distances of 2.075(4) and 2.115(3) Å, respectively. Complexes 2a , 2b readily revert to 1a , 1b upon treatment with phenols. 1H NMR spectroscopy reveals that 2a , 2b are diamagnetic and 2b exists as two isomers, consistent with a proposed eclipsed orientation of the ketimido ligands in these ruthenium(IV) complexes. The reaction of 1a , 1b with PhI(OAc)2 to afford 2a , 2b suggests the utility of ArI(OR)2 as an oxidative deprotonation agent for the generation of high‐valent metal complexes featuring M? N bonds with multiple bonding characters. DFT and time‐dependent (TD)‐DFT calculations have been performed on the electronic structures and the UV/Vis absorption spectra of 1b and 2b , which provide support for the diamagnetic nature of 2b and reveal a significant barrier for rotation of the ketimido group about the Ru? N(ketimido) bond.  相似文献   

4.
The interactions of potentially dinucleating bridging functionalities (I–VI) with the ruthenium-bis(bypyridine) precursor [RuII(bpy)2(EtOH)2]2+have been explored. The bridging functionsI,II andVI directly result in the expected dinuclear complexes of the type [(bpy)2RuIILnRuII(bpy)2]z+ (1,2,7 and 8) (n = 0,z =4 andn = -2,z = 2). The bridging ligandIII undergoes N-N or N-C bond cleavage reaction on coordination to the RuII(bpy)2 core which eventually yields a mononuclear complex of the type [(bpy)2RuII(L)]+,3, where L =-OC6H3(R)C(R′)=N-H. However, the electrogenerated mononuclear ruthenium(III) congener, 3+in acetonitrile dimerises to [(bpy)2RuIII {-OC6H3(R)C(R′)=N-N=(R′)C(R)C6H3O-}RuIII(bpy)2]4+ (4). In the presence of a slight amount of water content in the acetonitrile solvent the dimeric species (4) reduces back to the starting ruthenium(II) monomer (3). The preformed bridging ligandIV undergoes multiple transformations on coordination to the Ru(bpy)2 core, such as hydrolysis of the imine groups ofIV followed by intermolecular head-to-tail oxidative coupling of the resultant amino phenol moieties, which in turn results in a new class of dimeric complex of the type [(bpy)2RuII -OC6H4-N=C6H3(=NH)O-RuII(bpy)2]2+ (5). In5, the bridging ligand comprises of twoN,O chelating binding sites each formally in the semiquinone level and there is ap-benzoquinonediimine bridge between the metal centres. In complex6, the preformed bridging ligand, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2-dihydro-1,2,4,5-tetrazine, H2L (V) undergoes oxidative dehydrogenation to aromatic tetrazine based bridging unit, 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine, L. The detailed spectroelectrochemical aspects of the complexes have been studied in order to understand the role of the bridging units towards the intermetallic electronic coupling in the dinuclear complexes.  相似文献   

5.
DFT calculations are performed on [RuII(bpy)2(tmen)]2+ ( M1 , tmen=2,3‐dimethyl‐2,3‐butanediamine) and [RuII(bpy)2(heda)]2+ ( M2 , heda=2,5‐dimethyl‐2,5‐hexanediamine), and on the oxidation reactions of M1 to give the C?C bond cleavage product [RuII(bpy)2(NH=CMe2)2]2+ ( M3 ) and the N?O bond formation product [RuII(bpy)2(ONCMe2CMe2NO)]2+ ( M4 ). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [RuII(bpy)2(tmen)]2+ ( M1 ) can undergo oxidative deprotonation to generate Ru‐bis(imide) [Ru(bpy)2(tmen‐4 H)]+ ( A ) or Ru‐imide/amide [Ru(bpy)2(tmen‐3 H)]2+ ( A′ ) intermediates. Both A and A′ are prone to C?C bond cleavage, with low reaction barriers (ΔG) of 6.8 and 2.9 kcal mol?1 for their doublet spin states 2 A and 2 A′ , respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on 2 A′ is relatively high (14.2 kcal mol?1). These calculation results are in agreement with the formation of the RuII‐bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with CeIV in aqueous solution to afford the RuII‐dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI‐MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.  相似文献   

6.
7.
The complex cis‐[RuIII(dmbpy)2Cl2](PF6) ( 2 ) (dmbpy = 4, 4′‐dimethyl‐2, 2′‐bipyridine) was obtained from the reaction of cis‐[RuII(dmbpy)2Cl2] ( 1 ) with ammonium cerium(IV) nitrate followed by precipitation with saturated ammonium hexafluoridophosphate. The 1H NMR spectrum of the RuIII complex confirms the presence of paramagnetic metal atoms, whereas that of the RuII complex displays diamagnetism. The 31P NMR spectrum of the RuIII complex shows one signal for the phosphorus atom of the PF6 ion. The perspective view of each [RuII/III(dmbpy)2Cl2]0/+ unit manifests that the ruthenium atom is in hexacoordinate arrangement with two dmbpy ligands and two chlorido ligands in cis position. As the oxidation state of the central ruthenium metal atom becomes higher, the average Ru–Cl bond length decreases whereas the Ru–N (dmbpy) bond length increases. The cis‐positioned dichloro angle in RuIII is 1.3° wider than that in the RuII. The dihedral angles between pair of planar six‐membered pyridyl ring in the dmbpy ligand for the RuII are 4.7(5)° and 5.7(4)°. The observed inter‐planar angle between two dmbpy ligands in the RuII is 89.08(15)°, whereas the value for the RuIII is 85.46(20)°.  相似文献   

8.
A series of octahedral RuII/RuIII complexes of the type [Ru(Y)(CO)(BAX)(PPh3)2] and [RuCl2(BAX)(PPh3)2] (Y = H or Cl; BAX = benzaldehydeacetylhydrazone anion; X = H, Me, OMe, OH, Cl or NO2) have been prepared and characterised by spectral, magnetic and cyclic voltammetric studies. The RuII complexes are low spin diamagnetic (S = 0) whereas the RuIII complexes are low spin and paramagnetic (S = 1/2). These RuII and RuIII complexes absorb in the visible region respectively at ca. 16,000 and 28,000 cm–1 which bands are assigned to the MLCT. The correlation of the max values of the RuIII complexes with the + Hammett parameter, is linear, indicating the profound effect of substituents on the electron density of the central metal. I.r. spectral data reveals that the hydrazone is chelated to ruthenium through the hydrazinic nitrogen and the deprotonated enolic oxygen. The rhombic nature of the e.s.r. spectra of the RuIII complexes indicates an asymmetry in the electronic environment around the Ru atom. RuII complexes in CH2Cl2 show an irreversible RuII/III redox couple at ca. 0.9–0.5 V, while the RuIII complexes show two reversible redox couples in the –0.1–0.1 and 0.8–0.6 V range, indicating that the higher oxidation state of ruthenium is stabilised by hydrazones.  相似文献   

9.
10.
Single crystals of [Zn(NH3)4]3[Mo4Te4(CN)12] (I) and [Cd(NH3)4]3[W4Te4(CN)12] (II) were obtained by applying solutions of K7[Mo4Te4(CN)12] · 11H2O and K6[W4Te4(CN)12] · 5H2O in aqueous ammonia over solutions of ZnCl2 and Cd(NO3)2 in glycerol and were characterized by X-ray diffraction analysis. The IR spectra and thermal properties of compounds I and II were examined.  相似文献   

11.
Hereby we present the synthesis of several ruthenium(II) and ruthenium(III) dithiocarbamato complexes. Proceeding from the Na[trans‐RuIII(dmso)2Cl4] ( 2 ) and cis‐[RuII(dmso)4Cl2] ( 3 ) precursors, the diamagnetic, mixed‐ligand [RuIIL2(dmso)2] complexes 4 and 5 , the paramagnetic, neutral [RuIIIL3] monomers 6 and 7 , the antiferromagnetically coupled ionic α‐[RuIII2L5]Cl complexes 8 and 9 as well as the β‐[RuIII2L5]Cl dinuclear species 10 and 11 (L=dimethyl‐ (DMDT) and pyrrolidinedithiocarbamate (PDT)) were obtained. All the compounds were fully characterised by elemental analysis as well as 1H NMR and FTIR spectroscopy. Moreover, for the first time the crystal structures of the dinuclear β‐[RuIII2(dmdt)5]BF4 ? CHCl3 ? CH3CN and of the novel [RuIIL2(dmso)2] complexes were also determined and discussed. For both the mono‐ and dinuclear RuII and RuIII complexes the central metal atoms assume a distorted octahedral geometry. Furthermore, in vitro cytotoxicity of the complexes has been evaluated on non‐small‐cell lung cancer (NSCLC) NCI‐H1975 cells. All the mono‐ and dinuclear RuIII dithiocarbamato compounds (i.e., complexes 6 – 10 ) show interesting cytotoxic activity, up to one order of magnitude higher with respect to cisplatin. Otherwise, no significant antiproliferative effect for either the precursors 2 and 3 or the RuII complexes 4 and 5 has been observed.  相似文献   

12.
Abstract

New dinuclear asymmetric complexes of ruthenium and rhenium, of formula [(bpy)(CO)3 ReI(4,4′-bpy)RuII/III(NH3)5]3+/4+ have been prepared and characterized by spectroscopic and electrochemical techniques. In the mixed-valent species [ReI, RuIII], the back electron transfer reaction RuII → ReII, that occurs after light excitation, is predicted to be in the Marcus inverted region. This fact is consistent with the observed quenching of the luminiscence of the Re chromophore in [(bpy)(CO)3ReI(4,4′-bpy)RuIII(NH3)5]4+, when compared to the parent complex [(bpy)(CO)3ReI(4,4′-bpy)]+. A theoretical treatment due to Creutz, Newton and Sutin has been successfully applied to predict the electronic coupling element in the mixed-valent complex.  相似文献   

13.
14.
15.
According to the protonation of [PPh4]2[Ru6C(CO)16] (1b) withp-toluene-sulfonic acid, a hydrido ruthenium cluster [PPh4][Ru6C(CO)16H] (3b) was obtained in 53% yield, which readily decomposed in protic solvents even at –20°C to yield1b, Ru6C(CO)16H2, and Ru5C(CO)15. Cluster3b was characterized by single-crystal X-ray analysis. The six metal atoms are arranged in the form of an octahedron with the carbido ligand located in the center. There are 13 terminal carbonyl, three bridging carbonyl, and a bridging hydrido ligands.  相似文献   

16.
CuII/RuII and CdII/RuII hybrid complexes [Cu(L1–3)(NC5H4C≡CRu(dppe)2Cl)] (1a-3a) and [Cd(L1-3)(NC5H4C≡CRu(dppe)2Cl)] (1b–3b) have been prepared by reaction of trans-[RuCl(dppe)2(C≡C-py-3)] (1) with copper or cadmium acetate in the presence of Schiff base ligands LH1–3 (where LH = 2-(pyrrole-2-yl-methylidine)aminophenol (LH1), 5-bromo-2-(pyrrole-2-yl-methylidine)aminophenol (LH2) and 5-nitro-2-(pyrrole-2-yl-methylidine)aminophenol (LH3)). The hybrid materials were characterized on the basis of elemental analyses, TEM, IR, UV–visible, 1H NMR, and 31P NMR spectral studies. TEM overview observations revealed well-dispersed spherical nanoparticles of ~60 nm are formed. Quasireversible redox behavior is observed for CuII/RuII complexes corresponding to CuI/CuII and RuII/RuIII couples. All the complexes exhibit blue-green emission as a result of fluorescence from the intraligand (π → π*) emission excited state with good quantum yield. The second-order nonlinear optical (NLO) properties of CuII/RuII and CdII/RuII complexes have been investigated by the Kurtz-powder method. The second harmonic generation efficiency of these complexes show that these complexes are NLO active and display good second-order nonlinear optical activity.  相似文献   

17.
An N-pyridyl-o-aminophenol derivative that stabilises mixed-valence states of ruthenium ions is disclosed. A diruthenium complex, [(LIQ0)Ru2Cl5] ⋅ MeOH ( 1⋅ MeOH) is successfully isolated, in which LIQ0 is the o-iminobenzoquinone form of 2-[(3-nitropyridin-2-yl)amino]phenol (LAPH2). In 1 , LIQ0 oriented towards one ruthenium centre is a non-innocent NO-donor redox ligand, whereas another oriented towards another ruthenium centre is an innocent pyridine-donor redox ligand. Complex 1 is a diruthenium(II,III) mixed-valence complex, [RuII(LIQ0)(μ-Cl)2RuIII], with a minor contribution from the diruthenium(III,III) state. [RuIII(LISQ.−)(μ-Cl)2RuIII] contains LISQ.−, which is the o-iminobenzosemiquinonate anion radical form of the ligand. Complexes 1 and 1 + are diruthenium(II,II), [RuII(LIQ0)(μ-Cl)2RuII], and diruthenium(III,III), [RuIII(LIQ0)(μ-Cl)2RuIII], complexes, respectively, of LIQ0. Complex 1 2− is a diruthenium(II,II) complex of the o-iminobenzosemiquinonate anion radical (LISQ.−), [RuII(LISQ.−)(μ-Cl)2RuII], with a minor contribution from the diruthenium(III,II) form, [RuIII(LAP2−)(μ-Cl)2RuII]. Complex 1 2+ is a diruthenium(III,IV) mixed-valence complex of LIQ0, [RuIII(LIQ0)(μ-Cl)2RuIV]. Complexes 1 and 1 2+ exhibit inter-valence charge-transfer transitions at λ=1300 and 1370 nm, respectively.  相似文献   

18.
The heterogeneous phase reaction of excess sodium salt of 2-hydroxypyridine (OHpy) with [Ru(κ2C,O-RL)(PPh3)2(CO)Cl] (1) afforded complexes of the type [Ru(κ1C-RL)(PPh3)2(CO)(Opy)] (2) in excellent yield [κ2C,O-RL is 4-methyl-6-((N-R-arylimino)methyl)phenolato-C2,O), κ1C-RL is 4-methyl-6-((N-R-arylimino)methyl)phenol-C2) and R is H, Me, OMe, Cl]. The chelation of Opy is attended with the cleavage of Ru-O and Ru-Cl bonds and iminium-phenolato → imine-phenol prototropic shift. The 12 conversion is irreversible and the type 2 species are thermodynamically more stable than the acetate, nitrite, and nitrate complexes of 1. The spectral (UV-vis, IR, NMR) and electrochemical data of the complexes are reported. In dichloromethane solution the complexes display one quasi-reversible RuIII/RuII cyclic voltammetric response with E1/2 in the range 0.65–0.69 V versus Ag/AgCl. The crystal and molecular structures of [Ru(κ1C-HL)(PPh3)2(CO)(Opy)]·2C6H6·0.5H2O, 2(H)·2C6H6·0.5H2O and [Ru(κ1C-ClL)(PPh3)2(CO)(Opy)]·2C6H6·0.25H2O, 2(Cl)·2C6H6·0.25H2O are reported, which revealed a distorted octahedral RuC2P2NO coordination sphere. The pairs (P,P), (C,O), and (C,N) define the three trans directions. The electronic structures of the complexes are also scrutinized by density functional theory.  相似文献   

19.
《Polyhedron》2003,22(14-17):2183-2190
The self-assembly of [M(CN)8]3− (M=Mo, W) anion and polyamine complexes of CuII[Cu(tetren)]2+ and [Cu(dien)(H2O)2]2+ (tetren=tetraethylenepentamine, dien=diethylenetriamine) in acidic aqueous solution gives (tetrenH5)0.8{CuII 4[WV(CN)8]4}·7.2H2O 1, (tetrenH5)0.8{CuII 4[MoV(CN)8]4}·7.2H2O 2, (dienH3){CuII 3[WV(CN)8]3}·4H2O 3 and (dienH3){CuII 3[MoV(CN)8]3}·4H2O 4 2D coordination polymers. All compounds are structure-related: the crystal structures of isomorphous 12 and 34, respectively, consist of double-layered cyano-bridged {CuII[WV(CN)8]}n square grid backbones and non-coordinated fully protonated polyamine countercations as well as H2O molecules located between the sheets. The magnetic measurements reveal long range ferromagnetic ordering with sharp phase transitions at TC in range 28–37 K and coercivity in range 30–225 Oe at liquid helium temperature, T=4.3 K.  相似文献   

20.
The water-soluble complex [RuClCp(PPh3)(mPTA)](CF3SO3) reacts with the thiopurines, bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2), to lead to the binuclear ruthenium(II) complexes [{RuCp(PPh3)(mPTA)}2-μ-(LS7,S′7)](CF3SO3)2 where (L = MBTT2? (1), EBTT2? (2), and PBTT2? (3)). All the complexes have been fully characterized by elemental analysis, IR, and multinuclear 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. The cyclic voltammetry of the complexes is characterized by two one-electron oxidative responses (RuII–RuII/RuIII–RuII; RuIII–RuII/RuIII–RuIII) that increase their redox potential when the bis(8-thiotheophylline)-alkyl-bridge growths. The reactivity against DNA and partition coefficient of the complexes were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号