首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of solid polymer electrolytes (SPEs) based on poly (ethylene oxide)/polylactic acid (PEO/PLA) with liquid crystal ionomer (LCI) intercalated montmorillonite (MMT) nanocomposites (LCI-MMT) has been prepared by solution blending method. The effects of LCI-MMT on the structural, crystallization, thermal, and ionic conductivity properties of solid polymer electrolytes have been analyzed. It is demonstrated that the incorporation of LCI-MMT into the blend suppressed the crystallinity of PEO and increased the crystallinity of PLA. The maximum ionic conductivity is found to be in the range of 1.05?×?10?5 S/cm for 0.5 wt% LCI-MMT, which is higher than that of the LCI-MMT-free polymer electrolyte (5.36?×?10?6 S/cm) at room temperature.  相似文献   

2.
The crystallization behavior of uncompatibilized and reactive compatibilized poly(trimethylene terephthalate)/polypropylene (PTT/PP) blends was investigated. In both blends, PTT and PP crystallization rates were accelerated by the presence of each other, especially at low concentrations. When PP content in the uncompatibilized blends was increased to 50–60 wt%, PTT showed fractionated crystallization; a small PTT crystallization exotherm appeared at ~135°C besides the normal ~175°C exotherm. Above 70 wt% PP, PTT crystallization exotherms disappeared. In contrast, PP in the blends showed crystallization exotherms at 113–121°C for all compositions. When a maleic anhydride‐grafted PP (PP‐g‐MAH) was added as a reactive compatibilizer, the crystallization temperatures (T c ) of PTT and PP shifted significantly to lower temperatures. The shift of PTT's T c was larger than that of the PP, suggesting that addition of the PP‐g‐MAH had a larger effect on PTT's crystallization than on PP due to reaction between maleic anhydride and PTT.

The nonisothermal crystallization kinetics was analyzed by a modified Avrami equation. The results confirmed that PTT's and PP's crystallization was accelerated by the presence of each other and the effect varied with blend compositions. When the PP content increased from 0 to 60 wt%, PTT's Avrami exponent n decreased from 4.35 to 3.01; nucleation changed from a thermal to an athermal mode with three‐dimensional growths. In contrast, when the PTT content increased from 0 to 90 wt% in the blends, changes in PP's n values indicated that nucleation changed from a thermal (0–50 wt% PTT) to athermal (60–70 wt% PTT) mode, and then back to a thermal (80–90 wt% PTT) mode. When PP‐g‐MAH was added as a compatibilizer, the crystallization process shifted considerably to lower temperatures and it took a longer crystallization time to reach a given crystallinity compared to the uncompatibilized blends.  相似文献   

3.
Abstract

Various types of bicomponent fibers composed of polylactide (PLA) and poly(butylene terephthalate) (PBT) with different molecular weights, arranging the polymers separately in the skin or core, were produced by high-speed melt-spinning. The bicomponent spinning, arranging the PLA with high molecular weight (melt flow rate =1.9?g/10?min, L-lactide content = 98.7%) in the skin and the PBT with low molecular weight (IV = 0.835–0.865 dL/g) in the core, resulted in orientation-induced crystallization in the PLA component at the spinning speed of 2?km/min. This crystallization effect was ascribed to a chain-extending treatment applied to the original PLA (MFR = 4.0?g/10?min) to increase its molecular weight. By the treatment the PLA could crystallize when spun even at 1?km/min in its single-component spinning. On the other hand, the bicomponent spinning system interfered with the orientation-induced crystallization of PBT in the core. As a result, the critical spinning speed needed to generate the orientation-induced crystallization in the core PBT was elevated to 4?km/min. The inferior tensile behavior of the bicomponent fibers, as compared to the single-component PLA or PBT fibers, suggested poor compatibility between PLA and PBT. Transesterification reactions rarely occurred at the interface of the two polymers. The bicomponent fibers prepared from high molecular weight PLA and low molecular weight PBT, however, showed sufficient antibacterial activity and physical properties to be suitable for designing medical clothing materials.  相似文献   

4.
《Composite Interfaces》2013,20(3):203-215
Dodecyl amine-functionalized graphene oxide (DA-GO) was obtained via an amidation reaction. The results of X-ray diffraction and Fourier-transform infrared spectroscopy verified that long alkyl chains of DA were successfully grafted on the GO sheets. Transmission electron microscope and scanning electron microscope techniques illustrated that homogeneously dispersed DA-GO/high-density polyethylene (HDPE) nanocomposites were obtained. The effects of DA-GO on the non-isothermal crystallization of HDPE were then investigated by differential scanning calorimetry (DSC) at various cooling rates (2, 5, 10, and 20?°C/min). Significant increase in the onset crystalline temperature (To) and the peak crystallization temperature (Tp) of HDPE incorporating DA-GO indicated the strong nucleating ability of DA-GO. The investigation of half-time crystallization time (t1/2) demonstrated that crystallization rate of HDPE consisting of DA-GO is faster than that of pure HDPE at a given cooling rate. Ozawa, Avrami, and the combined Avrami–Ozawa methods (Mo) were used for analyzing experimental data. The Mo approach was successful in describing the non-isothermal crystallization process of DA-GO/HDPE nanocomposites. The results indicated that low DA-GO content accelerates the crystallization of HDPE, while higher content hinders the crystallization of HDPE.  相似文献   

5.
Poly(lactic acid) (PLA)/nanosilica composites were prepared by blending the PLA and nanosilica in chloroform and then evaporating the solvent to form the composite films in a dish. The Ozawa and Mo equations were used to characterize the nonisothermal cold crystallization kinetics of the PLA/nanosilica composites. The results indicated that the Ozawa equation was not successful while the Mo equation was successful to describe the nonisothermal crystallization kinetics of PLA/nanosilica composites. The values of crystallization activation energy (E c) of the samples were calculated by the Kissinger method. Although the sample crystallization rates were enhanced with the increase of nanosilica content, the samples exhibited increased E c in the presence of nanosilica. The results showed that nanosilica had an effect on both the nucleation and the crystal growth of PLA, promoting the nucleation but interfering with the molecular motion of PLA in the crystallization process.  相似文献   

6.
Poly(lactic acid) (PLA) nanocomposites containing 3%, 5% and 7% zeolite used in the present research study were prepared by solution casting. The PLA nanocomposites were structurally characterized by Scanning Electron Microscopy and Fourier-transform infrared spectroscopy. The effects of the gamma radiation at the absorbed doses of 10, 15 and 20?kGy on the structures and thermal properties of the nanocomposites were investigated in a tetrahydrofuran solvent. Thermodecomposition tests and analyses were carried within 30–500°C range at the rate of 10°C?min?1 by thermogravimetric analysis (TG). The activation energies for thermal degradation of the nanocomposites were calculated from their TG data by Flynn–Wall–Ozawa method. The G values of the nanocomposites were calculated based on molecular weights which were measured by means of gel permeation chromatography before and after the gamma irradiation. The Ea and molecular weight results showed that addition of zeolite to the PLA affected the radiation resistance of the polymer.  相似文献   

7.
The influences of thermal treatment on cold crystallization and the thermal behavior of poly‐L‐lactide (PLLA) were investigated by DSC and polarizing microscopy. Both the cooling and heating rates had effects on cold crystallization. Double peaks were observed for the samples on subsequently heating at 10°C min?1 after cooling between 5 and 20°C min?1. The degrees of crystallinity dramatically increased with decreasing cooling rate, and the size of PLLA spherulites increased with a decrease in the cooling rate. Double cold crystallization peaks were also observed during heating traces at higher rates for this material after fast cooling (20°C min?1) from the melt. The competition between the crystallization from the nuclei formed during cooling, and that from spontaneous nucleation might be responsible for the appearance of double peaks.  相似文献   

8.
The nucleation rate was measured by directly counting the number of nuclei, which were developed while an isotactic polypropylene melt was flowing under shear in a thin film. The nucleation rate was enhanced with an increased rate of shear, e.g., by a factor of 10 larger at the rate of shear of 14 s?1 compared with the quiescent state, at 134°C. The ratio of the shear‐enhanced nucleation rate to the nucleation rate in the quiescent state was larger at a higher temperature of crystallization, i.e., about 10 times at 134°C to 590 times at 140°C. The increase of the nucleation rate under shear flow was explained by a reduction of the lateral and end (fold) surface free energies; the product σ s 2 σ e decreased to 3.2×10?7 for the sheared melt, from 6.0×10?7 (J m?2)3 for the isotropic state. The free energy reduction was caused by transition of the nucleus formation mode from three‐dimensional folded chain nuclei to two‐dimensional bundle nuclei, in which chains lie down on the glass substrate, aligning parallel to the flow direction.  相似文献   

9.
Poly(ethylene glycol) (PEG) was added as a plasticizer to the composite of poly(lactic acid) (PLA) and a modified carbon black (MCB). Among the three different molecular weight (Mn = 1000, 2000, 6000) PEGs used, PEG2000 promoted crystallization of PLA and enhanced the nucleation activity of MCB more efficiently than the other two. The crystallization rate of PLA/PEG2000/3 wt% MCB composite was three times that of PLA. Although a small decrease in tensile strength and modulus of elasticity of the composite was found as the PEG content increased, the elongation at break of the PLA/PEG/MCB composites significantly improved. When the PEG2000 content was 15 wt%, the elongation at break of the blend was 90%, 4.5 times that of the neat PLA.  相似文献   

10.
Poly(butylene terephthalate)/silica nanocomposites were prepared by in situ polymerization of terephthalic acid, 1,4-butanediol and silica. Transmission electron microscopy (TEM) was used to examine the quality of the dispersion of silica in the PBT matrix. The non-isothermal crystallization behavior of pure PBT and its nanocomposites was studied by differential scanning calorimetry (DSC). The results show that the crystallization peak temperatures of PBT/silica nanocomposites are higher than that of pure PBT at a given cooling rate. The values of halftime of crystallization indicate that silica could act as a heterogeneous nucleating agent in PBT crystallization and lead to an acceleration of crystallization. The non-isothermal crystallization data were analyzed with the Avrami, Ozawa, and Mo et al. models. The non-isothermal crystallization process of pure PBT and PBT/silica nanocomposites can be best described by the model developed by Mo et al. According to the Kissinger equation, the activation energies were found to be ?217.1, ?226.4, ?259.2, and ?260.2 kJ/mol for pure PBT and PBT/silica nanocomposites with silica weight content of 1, 3 and 5 wt%, respectively.  相似文献   

11.
Polylactide (PLA)/graphene oxide (GO) nanocomposites with different GO loadings were prepared by solution blending using tetrahydrofuran (THF) as solvent. The morphologies of the nanocomposites in the cast films and in subsequently isothermally crystallized samples were investigated separately. According to polarized optical microscopy images of the composites after isothermal crystallization, it was deduced that GO had nucleation effects on the crystallization of PLA and led to the size of spherulites decreasing and the number of spherulites increasing. However, by virtue of SEM, unique microsphere morphologies were found in the cast films of the PLA/GO composites. It was found that the features of this kind of microsphere were not influenced by the compositions but by the evaporation rate of the solvent during the preparation of the cast films. A faster evaporation rate of solvent resulted in smaller size of the microspheres. Based on DSC and FTIR results, it was proposed that the forming of this kind of microsphere was related to hydrogen bonds being formed between PLA and GO. The unique microsphere morphology is suggested to provide a new method to prepare PLA microsphere-based scaffolds.  相似文献   

12.
The crystallization process of poly(ethylene terephthalate)/silica nanocomposites were investigated by differential scanning calorimetry (DSC) and then analyzed using the Avrami method. The results indicated that the crystallization of pure poly(ethylene terephthalate) (PET) was fitted for thermal nucleation and three‐dimensional spherical growth throughout the whole process, whereas the crystallization of PET/silica nanocomposites exhibits two stages. The first stage corresponds to athermal nucleation and three‐dimensional spherical growth, and the second stage corresponds to recrystallization caused by the earlier spherulites impingement. The crystallization rate increases remarkably and the activation energies decrease considerably when silica nanoparticles are added. The subsequent melting behavior of the crystallized samples shows that the melting point (T m) of nanocomposites is higher than that of pure PET, which might be caused by two factors: (1) The higher melting point might be due to some hindrance to the PET chains caused by the nanoparticles at the beginning of the melting process; (2) it might also be the case that more perfect crystals can be formed due to the higher crystallization temperatures and lower activation energies of PET/silica nanocomposites.  相似文献   

13.
The influences on the thermal degradation and crystallization behaviors of poly(p-dioxanone) (PPDO) were initially investigated by adding bis-(2,6-diisopropylphenyl) carbodiimide (labeled as St). It was found that the addition of St could significantly enhance the thermal stability and crystallizability of PPDO. The thermal decomposition temperature of PPDO increased with the increase of the amount of St added. The thermal decomposition activation energies of PPDO increased from 94.2 to 130.8 kJ mol?1 in the case of 5 wt% St. The addition of St did not change the crystal structure of PPDO, while it increased the number of nucleation sites and improved the crystallizability of PPDO. The crystallization activation energies, calculated by the Kissinger method, for PPDO and PPDO/5 wt% St were ?111.4 and ?141.5 kJ mol?1, respectively, confirming the crystallizability of PPDO was enhanced after the addition of St.  相似文献   

14.
Hot-stage microscopy was used to characterise crystal growth at the interface between sisal fibre bundles and a polylactic acid (PLA) matrix in order to better understand the mechanical properties of sisal fibre–PLA composites. Cooling rates and crystallisation temperatures and times were varied to influence crystalline morphology at the interface. Single sisal fibre bundles were evaluated in their as received state or treated with 6 wt.% caustic soda solution for 48?h at room temperature. A microbond shear test was used to characterise the shear strength of the interface as a function of fibre surface treatment. These tests were performed on sisal fibre bundles carefully embedded in flat films of PLA supported on card mounts. Fibre bundles in a PLA matrix were cooled from 180?°C at rates from 2 to 9?°C/min and then crystallised isothermally. For as received fibre bundles uneven growth of PLA spherulites occurred at all cooling rates and crystallisation temperatures. For caustic soda treated fibres, uneven spherulitic growth was observed at crystallisation temperatures at and above 125?°C. In contrast, transcrystalline growth was observed for samples cooled to 120?°C at cooling rates from 2 to 6?°C/min and then allowed to crystallise. The microbond shear strengths of untreated and caustic soda treated fibre bundles were evaluated using Weibull statistics and the caustic soda treated fibres exhibited higher interfacial shear strengths in comparison to untreated fibres, reflecting the development of a transcrystalline layer at the fibre to matrix interface.  相似文献   

15.
The role of spherical nano-CaCO3 particles treated with 2 wt% and 6 wt% stearic acid (SA), respectively, on the motion of macromolecular chains and segments of isotactic polypropylene (iPP) was studied through the dynamic mechanical analysis and nonisothermal crystallization. Higher nucleation activity of the particles and more nucleating sites were achieved in the 6 wt% SA treated particle nanocomposites with respect to the 2 wt% SA counterpart. The increased nucleation efficiency caused high inhomogeneity and thus large mobility of the amorphous phase of iPP, which favored a low glass transition temperature (Tg ) in the nanocomposites. However, the spherical nanoparicles also spatially restrained the motion of macromolecular chains and segments, and the better the nanoparticles dispersed, the stronger the restriction was. Thus the glass transition temperature (Tg ) of the nanocomposites decreased with increasing filler loading but recovered at a certain particle concentration. At this filler content, the maximal α-transition temperature (Tα ) and the main melting peak temperature (Tm1 ) as well as the lowest degree of crystallinity (XPP ) also occurred. This critical filler loading appeared at lower value (20 wt%) in 6 wt% SA treated nano-CaCO3 composites with respect to 2 wt% SA counterpart (25%) due to the better dispersion of particles in the former. It was concluded that the mobility of the macromolecular chains and segments of iPP was dominated by the competition of the spatial confinement and nucleation effect of nano-CaCO3 particles in the matrix.  相似文献   

16.
The nonisothermal crystallization process of polycaprolactone (PCL)/crosslinked carboxylated polyester resin (CPER) blends has been investigated for different blend concentrations by differential scanning calorimetry (DSC). The DSC measurements were carried out under different cooling rates namely: 1, 3, 5, 10, and 20°C/min. Thermally induced crosslinking of CPER in the blends was accomplished using triglycidyl isocyanurate as a crosslinking agent at 200°C for 10 min. The cured PCL/CPER blends were transparent above the melting temperature of PCL and only one glass transition temperature, Tg, located in the temperature range between the two Tgs of the pure polymer components, was observed, indicating that PCL and crosslinked CPER are miscible over the entire range of concentration. The nonisothermal crystallization kinetics was analyzed based on different theoretical approaches, including modified Avrami, Ozawa, and combined Avrami–Ozawa methods. All of the different theoretical approaches successfully described the kinetic behavior of the nonisothermal crystallization process of PCL in the blends. In addition, the spherulitic growth rate was evaluated nonisothermally from the spherulitic morphologies at different temperatures using polarized optical microscope during cooling the molten sample. Only one master curve of temperature dependence of crystal growth rate could be constructed for PCL/CPER blends, regardless of different blend concentrations. Furthermore, the activation energy of nonisothermal crystallization process (ΔEa) was calculated as a function of blend concentration based on the Kissinger equation. The value of ΔEa was found to be concentration dependent, i.e., increasing from 83 kJ/mol for pure PCL to 115 and 119 kJ/mol for 75 and 50 wt% PCL, respectively. This finding suggested that CPER could significantly restrict the dynamics of the PCL chain segments, thereby inhibit the crystallization process and consequently elevate the ΔEa.  相似文献   

17.
The isothermal crystallization process of polybutene-1 melt under shear flow was investigated with an optical microscope and a device (shear flow direct observation system, SF-DOS) newly developed by our group. The nucleation rate and growth rate of polybutene-1 were studied under slow shear rates (0–0.1 s?1) at high crystallization temperature (102–108°C) with the SF-DOS. The nucleation remains heterogeneous. The number of nuclei after long times increased and induction time decreased by increasing the shear rate. Anisotropic and distorted spherulites were observed under shear flow, while the spherulites in the static condition were isotropic. It was clearly observed that the spherulites were rotating under shear. The average growth rates were enhanced by increasing shear rates, which acts as the main factor affecting the overall crystallization kinetics. Finally, the crystallization kinetics were analyzed on the basis of the secondary nucleation theory of Hoffman and Lauritzen. Even under very low shear rates, the product of lateral‐surface free energy σ s and fold-surface free energy σ e was found to be reduced as shear rate increased.  相似文献   

18.
Montmorillonites modified by hydroxyethylhexadecyldimethyl ammonium bromine were used to prepare poly(?-caprolactone) (PCL)/montmorillonite (MMT) nanocomposites by in situ ring-opening polymerization of ?-caprolactone. Wide-angle X-ray diffraction (WAXD) analysis illustrated that an exfoliated structure of PCL/MMT nanocomposite was obtained. The nonisothermal crystallization kinetics of poly(?-caprolactone) and PCL/MMT nanocomposite was investigated by differential scanning calorimetry (DSC) at various cooling rates. The values of half-time of crystallization (t1/2) and crystallization rate constant (Zc) showed that crystallization rate increased with the increase of cooling rates for both PCL and PCL/MMT nanocomposite; however, the crystallization rate of PCL/MMT nanocomposite was faster than that of PCL at a given cooling rate.  相似文献   

19.
A novel method was employed to modify the surface of carbon black (CB) by an organic small molecule in a Haake Rheomix mixer. The modified carbon black (MCB) was dispersed uniformly in poly(lactic acid; PLA). The crystallization behaviors of PLA, PLA/CB and PLA/MCB composites were investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and polarizing optical microscopy. It is found that the addition of CB or MCB can influence the crystallization behavior of PLA. PLA/MCB has a faster crystallization rate and higher crystallization peak temperature than PLA/CB. For non-isothermal studies, Jeziorny and Mo equations were employed. The Mo equation can well describe the non-isothermal crystallization of the three samples. For PLA/CB and PLA/MCB composites containing 3wt% fillers, the nucleating activity for CB is about 0.32, and about 0.16 for MCB. All these results show that MCB is an effective nucleating agent. PLA/MCB has a higher nucleation rate than PLA/CB because of the finer dispersed particles size and improved interaction between MCB and PLA.  相似文献   

20.
Organic montmorillonite (MMT) reinforced poly(trimethylene terephthalate) (PTT)/ polypropylene (PP) nanocomposites were prepared by melt blending. The effects of MMT on the nonisothermal crystallization of the matrix polymers were investigated using differential scanning colorimetry (DSC) and analyzed by the Avrami equation. The DSC results indicated that the effects of MMT on the crystallization processes of the two polymers exhibited great disparity. The PTT's crystallization was accelerated significantly by MMT no matter whether PTT was the continuous phase or not, but the thermal nucleation mode and three-dimensional growth mechanism remained unchanged. However, in the presence of MMT, the PP's crystallization was slightly retarded with PP as the dispersed phase, and was influenced little with PTT as the dispersed phase. When the MMT content was increased from 2_wt% to 7_wt%, the crystallization of the PTT phase was slightly accelerated, whereas the crystallization of the PP phase was severely retarded, especially at lower temperatures. Moreover, the nucleation mechanism for the PP's crystallization changed from a thermal mode to an athermal one. In the polypropylene-graft-maleic anhydride (PP-g-MAH) compatibilized PTT/PP blends, with the addition of 2_wt% MMT during melt blending, the T c (PTT) shifted 7.8°C to lower temperature and had a broadened exotherm, whereas the T c (PP) shifted 17.1°C to higher temperature, with a narrowed exotherm. TEM analysis confirmed that part of the PP-g-MAH was combined with MMT during blending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号