首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子沉积聚合物膜的制备及其摩擦学性能研究   总被引:9,自引:0,他引:9       下载免费PDF全文
以聚对磺酸钠苯乙烯 (PSS)为聚阴离子、聚烯丙基氯化氨 (PAH)为聚阳离子交替沉积制备了多层聚合物纳米复合膜 ,用热分析仪考察了这两种体相聚合物的热稳定性 ,采用紫外 -可见光谱仪、椭圆偏振光测厚仪、接触角测量仪等分析了复合膜的性能 ,用DF -PM型动静摩擦系数精密测定装置考察了其摩擦学性能 .结果发现 ,所制备的聚合物复合膜具有一定的减摩作用 ,原因是单晶硅表面沉积聚合物超薄膜可以降低表面的粘着力 ,对硅表面具有微观修饰作用 ,从而降低其同钢对摩时的摩擦系数 ;单晶硅表面分子沉积聚合物纳米复合膜的摩擦学特性同超薄膜的层数相关 ,沉积层数较多的超薄膜的耐磨寿命较长 ,并因加热处理而得到明显改善 .  相似文献   

2.
The fretting wear behavior of ultra-high molecular weight polyethylene (UHMWPE) against a GCr15 steel ball was investigated using an Optimal SRV-IV oscillating reciprocating friction and wear tester (Optimal Corp., Germany). The influence of temperature, stroke size and frequency was studied in detail under a normal load of 10 N. The results showed that the friction coefficients initially decreased and then increased afterward with the increasing of temperature, having the lowest value at 0°C. The wear loss of UHMWPE at a stroke of 100 µm showed a similar tendency as the friction coefficients, but monotonously increased with increasing of temperature for a stroke of 200 µm. According to an analysis of the worn surface, it was concluded that abrasive wear accompanied with local plastic deformation dominated the wear mechanism in the process of the fretting test at ?30°C. The plastic deformation was slightly less at 0°C than that at ?30°C. With the increasing of temperature, the hardness of UHMWPE decreased significantly, plastic deformation and adhesive wear became more severe. In addition, a lubricating transfer film was formed on the steel ball.  相似文献   

3.
3-Aminopropyltriethoxysilane (APTES) thin films were prepared on the hydroxylated silicon substrate by a self-assembling process from formulated solution. Chemical compositions of the films were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of APTES thin films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. It was found that the macroscopic friction coefficients for coating times more than 1 h ranged from 0.177 to 0.3 whereas the value for short coating time was as high as 0.8. It was also found that the tribological behaviors of APTES films were sensitive to normal load and sliding velocity. SEM observation of the morphologies of worn surfaces indicates that the wear of silicon is characteristic of brittle fracture and severe abrasion. Differently, abrasion and micro-crack dominate the wear of APTES–SAM. The superior friction reduction and wear resistance of APTES films compared to the silicon substrate are attributed to good adhesion of the films to the substrate.  相似文献   

4.
Lanthanum-based thin films deposited on the phosphonate 3-aminopropyltriethoxysilane (APTES) self-assembled monolayer (SAM) were prepared on the hydroxylated glass substrate by a self-assembling process from specially formulated solution. Chemical compositions of the films and chemical state of the elements were detected by X-ray photoelectron spectrometry (XPS). The thickness of the films was determined with an ellipsometer, while the morphologies of the original and worn surfaces of the samples were analyzed by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The tribological properties of the films sliding against GCr15 steel ball were evaluated on a UMT-2MT reciprocating friction and wear tester. As the results, the target film was obtained and reaction may have taken place between the film and the glass substrate. The tribological results show that lanthanum-based thin films are superior in reducing friction and resisting wear compared with APTES-SAM and phosphorylated APTES-SAM. SEM observation of the morphologies of worn surfaces indicates that the wear of APTES-SAM and the phosphorylated APTES-SAM is characteristic of brittle fracture and severe abrasion. Differently, slight abrasion and micro-crack dominate the wear of lanthanum-based thin films. The superior friction reduction and wear resistance of lanthanum-based thin films are attributed to the enhanced load-carrying capacity of the inorganic lanthanum particles in the lanthanum-based thin films as well as good adhesion of the films to the substrate.  相似文献   

5.
《Applied Surface Science》2001,169(1-2):34-43
Thin films of SiO2 and La2O3 were prepared on a glass substrate by a dip-coating process from specially formulated sols. The tribological properties of the resulting thin films sliding against a Si3N4 ball were evaluated on a one-way reciprocating friction and wear tester. The morphologies of the unworn and worn surfaces of the films were examined by an atomic force microscope (AFM) and a scanning electron microscope (SEM). La2O3 shows the best tribological performance. The coefficient of friction is about 0.1 and the wear life is over 5000 sliding passes both under higher (3 N) and lower load (1 N). The SiO2 film derived from a specially formulated aqueous solution shows much better performance in resisting wear and reducing friction than the one derived from an ethanol solution. The wear mechanisms of the films are discussed based on SEM observation of the worn surface morphologies. SEM observation of the morphologies of worn surfaces indicates that the worn surface of La2O3 is too slight to be observed by SEM. The wear of SiO2 derived from TEOS solution is the characteristic of delaminating, which is responsible for the abrupt failure of the film. The wear of SiO2 derived from aqueous solution is the characteristic of fracture. Brittle fracture and severe abrasion dominate the wear of glass substrate.  相似文献   

6.
Low surface energy polymer thin-films can be applied to surfaces to increase hydrophobicity and reduce friction for a variety of applications. However, wear of these thin films, resulting from repetitive rubbing against another surface, is of great concern. In this study, we show that highly hydrophobic surfaces with persistent abrasion resistance can be fabricated by depositing fluorinated carbon thin films on sandblasted glass surfaces. In our study, fluorinated carbon thin films were deposited on sandblasted and as-received smooth glass using deep reactive ion etching equipment by only activating the passivation step. The surfaces of the samples were then rubbed with FibrMet abrasive papers in a reciprocating motion using an automatic friction abrasion analyzer. During the rubbing, the static and kinetic friction forces were also measured. The surface wetting properties were then characterized using a video-based contact angle measuring system to determine the changes in water contact angle as a result of rubbing. Assessment of the wear properties of the thin films was based on the changes in the water contact angles of the coated surfaces after repetitive rubbing. It was found that, for sandblasted glass coated with fluorinated carbon film, the water contact angle remained constant throughout the entire rubbing process, contrary to the smooth glass coated with fluorinated carbon film which showed a drastic decrease in water contact angle with the increasing number of rubbing cycles. In addition, the static and kinetic friction coefficients of the sandblasted glass were also much lower than those of the smooth glass.  相似文献   

7.
In this work, investigations were conducted to analyze the properties of diamond-like carbon (DLC) film deposited on ultra-high molecular weight polyethylene (UHMWPE) by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) at a low temperature of 50 °C. Composition and structure of the films were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. Hardness and wettability of the film were tested. Tribological characterizations were carried out on a universal micro-tribometer, and reciprocating friction against ZrO2 ball was adopted with 25% bovine serum as lubrication. Results show that DLC film was successfully deposited on UHMWPE surface by RF-PECVD and the sp3 content was about 20% in the film. The film increased the macrohardness of the substrate by about 42% and the wettability was improved too. Tribology test showed a higher friction coefficient but a much smaller wear volume after the deposition due to the surface roughening and strengthening.  相似文献   

8.
Transfer behaviors of molded polytetrafluoroethylene (PTFE) blocks embedded in metal substrates were studied using a DFPM reciprocating tribometer under designed conditions. The substrate properties markedly affected the embedded PTFE transfer behaviors. For instance, the surface friction coefficient when embedded in AISI-1045 steel had evident fluctuations even after 1000 cycles although the friction coefficient decreased with the increase of the sliding cycles. On the other hand, the friction coefficient when the PTFE was embedded in 2024Al was remarkably reduced during the first 200 cycles, reaching a low and stable state. The loads played different roles in the transfer process; a higher load was advantageous for the steel-PTFE embedded composites, but it resulted in the opposite result for the Al-PTFE embedded composites. The motion direction of the GCr15 tribometer steel ball had no remarkable effect on the transfer behaviors. The worn surface of the substrates and the steel ball were observed and analyzed using scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results indicate that the efficiency of second transfer film formation on the 2024Al substrate was better than for the AISI-1045 steel. The adhesion properties of Al enhanced the mechanical transfer of PTFE during the friction process.  相似文献   

9.
Polyimide thin films, which possess good stability and film uniformity, are successfully fabricated on single crystal silicon wafers coated with a thin polymer brush by suface-initiated polymerization (SIP) as an adhesive layer. The growth kinetic of polyglycidyl methacrylate (PGMA) brush was studied by the means of ellipsometry. The nano-scale morphology and chemical composition of PGMA brush and polyimide film were studied with atomic force microscopy (AFM), Fourier transform infrared spectrum (FT-IR), and X-ray photoelectron spectroscopy (XPS). The tribological behaviors of the thin films sliding against AISI-52100 steel ball were examined on a static-dynamic friction precision measurement apparatus and UMT-2MT tribometer. The worn surface of the polyimide thin films was investigated with scanning electron microscopy (SEM). The results indicated that the chemically bonded polyimide films exhibited better friction reduction and antiwear behavior compared to the polymide films on bare silicon surface. At a load of 0.5 N and sliding speed of 20 mm s−1, the durability life of the polyimide thin films is over 25,000 sliding cycles and the friction coefficient is about 0.08.  相似文献   

10.
The tribological behaviors of diamond and diamond-like carbon (DLC) films play a major role on their machining and mechanical applications. In this study, diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate respectively adopting the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode, and their friction properties are evaluated on a reciprocating ball-on-plate tribometer with counterfaces of silicon nitride (Si3N4) ceramic, cemented tungsten carbide (WC) and ball-bearing steel materials, under the ambient air without lubricating condition. Moreover, to evaluate their cutting performance, comparative turning tests are conducted using the uncoated WC-Co and as-fabricated CVD diamond and DLC coated inserts, with glass fiber reinforced plastics (GFRP) composite materials as the workpiece. The as-deposited HFCVD diamond and DLC films are characterized with energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), X-ray diffraction spectroscopy (XRD), Raman spectroscopy and 3D surface topography based on white-light interferometry. Furthermore, Rocwell C indentation tests are conducted to evaluate the adhesion of HFCVD diamond and DLC films grown onto WC-Co substrates. SEM and 3D surface topography based on white-light interferometry are also used to investigate the worn region on the surfaces of diamond and DLC films. The friction tests suggest that the obtained friction coefficient curves that of various contacts exhibit similar evolution tendency. For a given counterface, DLC films present lower stable friction coefficients than HFCVD diamond films under the same sliding conditions. The cutting tests results indicate that flank wear of the HFCVD diamond coated insert is lower than that of DLC coated insert before diamond films peeling off.  相似文献   

11.
This paper discusses the seawater and saline solutions effects on the tribological behavior of diamond-like carbon (DLC) films. The adsorption of Fe on DLC surface is one of the mechanisms that is believed to be the cause of the decrease in dispersive component of the surface energy and increase of the ID/IG ratio leading to low friction coefficient and wear rate under corrosive environments. Tribological behaviors DLC films were experimentally evaluated under corrosive environments by using steel ball and DLC coated steel flat under rotational sliding conditions. The DLC films were prepared on 440 stainless steel disks by DC-pulsed PECVD using methane as a precursor gas. Two different set of tribological system was assembled, one when the liquids and the pairs were put inside of a stainless steel vessel and others inside of a PTFE. Every tribological test was performed under 10 N normal load120 mms? 1 of sliding speed. The friction coefficients were evaluated during 1000 cycles.  相似文献   

12.
兰惠清  徐藏 《物理学报》2012,61(13):133101-133101
掺硅类金刚石(Si-DLC) 薄膜表现出优异的摩擦学性能, 在潮湿空气和高温中显示出极低的摩擦系数和很好的耐磨性, 但是许多实验表明Si-DLC膜的摩擦性能受其硅含量的影响很大. 因此, 本文采用分子动力学模拟的方法分别研究干摩擦和油润滑两种情况下不同硅含量的Si-DLC膜的摩擦过程. 滑移结果表明干摩擦时DLC膜和掺硅DLC膜之间生成了一层转移膜, 而油润滑时则为边界膜. 因此干摩擦时的摩擦力明显大于油润滑时的摩擦力. 少量添加硅确实能降低DLC膜的摩擦力, 但是硅含量大于20%后对DLC膜的摩擦行为几乎无影响. 干摩擦时硅含量对转移膜内键的数量影响很大, 转移膜内CC键和CSi键都先增加后减少, 滑移结束时几乎不含CSi键.  相似文献   

13.
The tribological properties of polyphenylene sulfide (PPS), polyethersulfone (PES) and polysulfone (PSU), which have similar molecular structures, were investigated using an end-face contact tribometer and a reciprocating tribometer. The thermomechanical behavior of the polymers was analyzed using dynamic mechanical analysis (DMA). PPS exhibited a maximum friction coefficient with increasing load and sliding speed, while the friction coefficients of PES and PSU decreased only slightly. The wear rate of PPS was much lower than that of PES and PSU under high loads and speeds. It is suggested that the main factors influencing the friction and wear properties of the neat polymers are their condensed state and heat resistance. Amorphous PES and PSU showed liquid-like behavior and very low friction when the frictional surface was in the molten-flow state. The macromolecular crystals of crystallizable PPS give it some solid-like behavior and load-carrying capacity; hence PPS exhibited lower wear than PES and PSU.  相似文献   

14.
The influence of a cross-linking agent, diamine, and C60 fullerene on the antifriction and wear properties of a solid lubricant made of trifluorochloroethylene-vinylidene fluoride copolymer was studied for steel-to-steel sliding friction. The wear characteristics are improved in the whole range of loads investigated, while the antifriction properties, only at small loads. A qualitative wear test method is proposed in which the test-period-averaged friction coefficient of a hybrid specimen (coating plus metal substrate) is measured with a standard friction machine. A model that considers the combined interaction of the substrate and the coating with the roller was used to calculate the linear wear rate of steel and the probabilistic parameter of wear.  相似文献   

15.
Multiply-alkylated cyclopentanes (MACs) composite thin films containing Cu nanoparticles are fabricated on the octadecyltrichlorosilane (OTS)-modified substrate by a spin-coating technique. The thickness, wetting behavior, and nanoscale morphologies of the films are characterized by means of ellipsometry, contact angle measurement, and atomic force microscope (AFM). The friction and wear behaviors of the thin films sliding against Si3N4 ball are examined on a UMT-2MT tribometer in a ball-on-disk contact mode. The worn surfaces of the OTS-MAC-Cu composite film and the counterpart Si3N4 balls are investigated with a scanning electron microscope. Water contact angle on OTS-MAC-Cu composite film is higher than that of OTS-MAC film. OTS-MAC-Cu composite film exhibits higher load-carrying capacity and better friction reduction and antiwear behavior as compared with OTS-MAC film. This may be attributed to the load-carrying and self-repairing property of the Cu nanoparticles in the composite film and the formation of a transfer layer composed of OTS, MAC, and Cu on the rubbing surface of the counterpart ball.  相似文献   

16.
Metal matrix composites containing titanium nitrides or titanium borides raise great interest to researchers due to their high wear resistance and enhanced corrosion properties. In the present investigation composite coatings containing both titanium nitrides/carbonitrides and titanium diborides were produced on plain steel substrates using the plasma transferred arc (PTA) technique with argon-nitrogen mixtures in the plasma and shielding gas. The microstructure of the metal matrix composites (MMC) obtained was thoroughly studied and found to consist of primary titanium diboride particles surrounded by a eutectic matrix containing, apart from ferrite, both titanium diboride and titanium carbonitride particles. The wear behavior of the composite coatings was assessed by pin on disk experiments. The wear rate against both a tool steel counterbody and an alumina counterbody is of the order of 10−4 mm3/m. The friction coefficient for both the alloyed layer-tool steel system and the alloyed layer-alumina system increases up to sliding speed of 0.30 m/s and then decreases, when the sliding speed increases further. Specifically, the friction coefficients are varied between the values 0.5 and 0.65. The wear mechanism for the tribosystem alloyed layer-tool steel is characterized by plastic deformation and adherence of material coming from the alloyed layer to the surface of the ball, while for the tribosystem alloyed layer-alumina ball, severe plastic deformation and formation of oxide layer are observed.  相似文献   

17.
Multiply-alkylated cyclopentanes (MACs) with different molecular structure were deposited on single crystal silicon wafers coated with a thin aminopropyltrimethoxylsilane (APS) film as an adhesive layer to form MACs-APS films. The thickness, wetting behavior and nano-scale morphologies of the films were characterized by means of ellipsometry, contact angle measurement, and atomic force microscopy (AFM). The friction and wear behaviors of the thin films sliding against a Si3N4 ball were examined on a UMT-2MT tribometer in a ball-on-disk contact mode. The worn surfaces of the MACs-APS films and the counterpart Si3N4 balls were investigated with a scanning electron microscope (SEM). It was found that the water contact angles on the MACs-APS film increased with the MACs alkyl chain-length. The MACs-APS film exhibited higher load-carrying capacity and better friction reduction and anti-wear behavior as compared with the APS film. This is suggested to occur because the APS acts as a strongly bonded lubricant phase and MACs as a mobile lubricant phase in the MACs-APS film. The increase of the chain-length of the alkyl substituent in the MACs compounds resulted in improved tribological properties of MACs-APS film. It is suggested that the longer alkyl chains are much more flexible and can dissipate the mechanical energy during the shearing process more easily than the short chain compounds. MACs with the longer chains have stronger chain-chain interactions and the larger MAC molecules have stronger intermolecular interactions, resulting in the good tribological properties of MACs-APS film.  相似文献   

18.
The tribological properties, such as coefficient of friction, adhesion and wear durability of an ultra-thin (<10?nm) dual-layer film on a silicon surface were investigated. The dual-layer film was prepared by dip-coating perfluoropolyether (PFPE), a liquid polymer lubricant, as the top layer onto a 3-glycidoxypropyltrimethoxy silane self-assembled monolayer (epoxy SAM)-coated Si substrate. PFPE contains hydroxyl groups at both ends of its backbone chain, while the SAM surface contains epoxy groups, which terminate at the surface. A combination of tests involving contact angle measurements, ellipsometry, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) was used to study the physical and chemical properties of the film. The coefficient of friction and wear durability of the film were investigated using a ball-on-disk tribometer (4?mm diameter Si3N4 ball as the counterface at a nominal contact pressure of ~330?MPa). AFM was used to investigate the adhesion forces between a sharp Si3N4 tip and the film. This dual-layer film had a very low coefficient of friction, adhesion and wear when compared to epoxy SAM-coated Si only or bare Si surface. The reasons for the improved tribological performance are explained in terms of the lubrication characteristics of PFPE molecules, low surface energy of PFPE, covalent bonding between PFPE and epoxy SAM coupled with reduced mobile PFPE. The low adhesion forces coupled with high wear durability show that the film has applications as a wear resistant and anti-stiction film for microcomponents made from Si.  相似文献   

19.
The wear behaviour of an austenitic stainless steel is analysed using a tribometer working in pressurised high temperature water (PHTW). The precise contact conditions, low pressure impact and sliding contacts, play an important role on the surface wear in this corrosive medium. The tests which include both impact and sliding are the most severe. The friction films formed during these tests are compared with those obtained with pure oxidation. It is shown that these films participate in the formation of elongated ‘indents’ observed on the surfaces. Nano-indentation measurements consolidate this hypothesis.  相似文献   

20.
Q. Chen  K.C. Chan  L. Liu 《哲学杂志》2013,93(28):3705-3715
Due to their excellent wear resistant properties and high strength, as well as a low Young's modulus, Zr-based bulk metallic glasses (BMGs) are potentially suitable biomaterials for low-friction arthroplasty. The wear characteristics of the Zr60.14Cu22.31Fe4.85Al9.7Ag3 bulk amorphous alloy against ultra-high-molecular-weight polyethylene (UHMWPE) compared to a CoCrMo/UHMWPE combination were investigated in two different wear screening test devices, reciprocating and unidirectional. Hank's solution and sterile calf bovine serum were selected as the lubricant fluid media. It was found that different fluid media had insignificant effect on polyethylene wear against BMG counterfaces. The wear behaviour obtained on both test devices demonstrated that Zr-based BMG achieved UHMWPE counterface wear rates superior to conventional cast CoCrMo alloy, where the wear rate of UHMWPE is decreased by over 20 times. The tribological performance of these joints is superior to that of conventional metal-on-polymer designs. Contact angle measurements suggested that the advantage of BMG over a CoCrMo alloy counterface is attributed to its highly hydrophilic surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号