首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abaca fibers show tremendous potential as reinforcing components in composite materials. The purpose of this study is to investigate the effect of abaca fiber content on physical, mechanical and tribological properties of abaca fiber reinforced friction composites. The friction composites were fabricated by a compression molder and investigated using a friction test machine. The experiment results show that surface treatment of abaca fibers could improve the mechanical properties of abaca fiber and interface bonding strength of the abaca fiber and composite matrix. Density of friction composites decreased with the increasing of abaca fiber content (0 wt%–4 wt%). The different content of abaca fibers had less effect on hardness of specimens, whereas large of impact strength. The specimen F3 with 3 wt% abaca fibers had the lowest wear rate and possessed the best wear resistance, followed by specimen F4 with 4 wt% abaca fibers. The worn surface morphologies were observed using the Scanning Electron Microscopy for study the tribological behavior and wear mechanism. The results show that a large amount of secondary contact plateaus presented on the worn surface of specimen F3 which had relatively smooth worn surface.  相似文献   

2.
To improve the wear resistance of carbon fabric reinforced polyimide (CF/PI) composite, surface-modified graphene (MG) was synthesized and employed as a filler. The flexural strength, Rockwell hardness and thermal properties of the composites were tested. The composites were also evaluated for their tribological properties in a ring-on-block contact mode under dry sliding conditions. The results showed that the wear rate of MG reinforced CF/PI composites was reduced when compared to unfilled CF/PI composite. It was found that the 1?wt% MG filled CF/PI composites exhibited the optimal tribological properties. The worn surface, wear debris and transfer films were analyzed by scanning electron microscopy (SEM) and optical microscopy (OM) with the results helping to characterize the wear mechanism.  相似文献   

3.
《Composite Interfaces》2013,20(5):395-414
The dry sliding wear characteristics of glass-epoxy (G-E), graphite-filled G-E and functionally graded graphite-filled G-E composites were investigated using pin-on-disc test rig. The specific wear rate was determined as a function of applied load, sliding velocity and sliding distance. The results revealed that the specific wear rate increases in all the tested composites with increasing wear parameter. But, the admirable wear resistance was obtained with functionally graded graphite-filled G-E composite. The scanning electron microscope studies of worn-out surfaces support the involved wear mechanisms and are well indicated in the worn-out surface features such as matrix wear, fibre exposure, fibre breakage, fibre and matrix deboning, microcracking, debris formation, fibre cracking and removal of fibres.  相似文献   

4.
《Composite Interfaces》2013,20(7):575-586
Lightweight, high mechanical strength insulating materials exhibiting high resistance to corrosion, solvents and abrasive wear are desired for wire and cable insulation as well as protection. Polyethylenes are generally used for such applications owing to their good electrical insulation properties and being inert to solvents at room temperature. However, their abrasion resistance is quite poor. Hence, in the present work, an attempt has been made to improve the abrasive wear resistance of low-density polyethylene (LDPE) by incorporating hollow microspheres, known as cenospheres, in the base polymer to form composites. These cenospheres are obtained from flyash particles, a thermal power plant waste, and do not tend to increase the weight of the polymer composite when used as a filler. The composites were developed by changing the weight fraction of untreated as well as silane treated cenospheres to the extent of 5 wt%. Tribological characterization of these composites was done in abrasive wear mode by varying the operating parameters, such as speed and sliding distance against silicon carbide paper. It was found that 10 wt% silane treated cenosphere filled LDPE composite showed the maximum wear resistance (~×10?11 m3/N m) among the six composites. However, a further increase in filler concentration decreased the wear resistance. The improvement in wear resistance was supported by scanning electron microscopy and attributed to the strong interaction between silane treated cenosphere and LDPE molecules which resisted the elongation and shearing of polymer chains by the abrasive grits.  相似文献   

5.
Carbon fibers (CF) were surface treated with air-oxidation and rare earths (RE), respectively. The friction and wear properties of polytetrafluoroethylene (PTFE) composites filled with differently surface treated carbon fibers, sliding against GCr15 steel under dry sliding condition, were investigated on a block-on-ring M-2000 tribometer. Experimental results revealed that RE treatment largely reduced the friction and wear of CF reinforced PTFE (CF/PTFE) composites. The RE treated composite exhibited the lowest friction and wear under dry sliding. Scanning electron microscopy (SEM) investigation of worn surfaces and transfer films of CF/PTFE composites showed that RE treated CF/PTFE composites had the smoothest worn surface under given load and sliding speed, and a continuous and uniform transfer film formed on the counterface. X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the oxygen concentration was obviously increased after RE treatment, and more carboxyl groups were introduced onto CF surfaces after RE treatment. The increase in the amount of oxygen-containing groups increased the interfacial adhesion between CF and PTFE matrix, and accordingly increased the tribological properties of the composite.  相似文献   

6.
Abstract

Organic molybdenum (e.g., molybdenum dialkyldithiocarbamate, Mo-DTC) is a typical additive for liquid lubricants which can produce a significant anti-wear role with only a minor addition. In this article Mo-DTC additives were used to enhance the wear resistance of a phenolic resin. Phenolic/Mo-DTC composites with various Mo-DTC filler ratios were prepared by hot-press molding. The hardness and wear performance of the composites were measured by a Shore durometer and by an M-2000 friction and wear tester, respectively. The results showed that after adding the Mo-DTC filler, both the hardness and the anti-wear properties of the composites materials were improved. Under the condition of high-speed with a smooth ring, the wear scar length for the sample with 1% Mo-DTC content decreased by 45.6% compared with that of the neat phenolic resin whereas for a wire rope ring a decrease of 16% was observed for 0.5% Mo-DTC. Based on the wear morphology of the composites, the wear mechanisms of the designed phenolic/Mo-DTC composites were determined.  相似文献   

7.
Metal matrix composites reinforced with nano-sized particles have attracted scientific and technological interest due to the enhanced properties exhibited by these coatings. Ni-SiC composites have gained widespread application for the protection of friction parts in the automobile industry. The influence of variables like SiC content, current density and stirring speed on microhardness of nano-composite coatings has been studied. The improved microhardness was associated with the reduction in crystallite size determined by X-ray diffraction studies. The influence of incorporation of nano-SiC in hardened Ni-Co alloy matrix was also studied. It was observed that for 28 wt.% Co content in the matrix the microhardness was higher compared to 70 wt.% for a given nano-SiC content. This was associated to the crystal phase of Ni-28Co-SiC being fcc compared to hcp phase exhibited by Ni-70Co-SiC. The wear resistance of pure Ni, Co and nano-composite coatings was studied using pin-on-disc wear tester under dry sliding condition. The volumetric wear loss indicated that, the wear resistance of Ni-SiC nano-composite is better than that of pure nickel deposit. The wear resistance of Ni-Co composites was observed to be superior to Ni composite. The wear behaviour of Ni and Ni-28Co composite was in accordance with the Archard's law. However, the superior wear characteristic exhibited by Ni-70Co-SiC composite followed the reverse Archard's behaviour.  相似文献   

8.
The tribological properties of polyphenylene sulfide (PPS), polyethersulfone (PES) and polysulfone (PSU), which have similar molecular structures, were investigated using an end-face contact tribometer and a reciprocating tribometer. The thermomechanical behavior of the polymers was analyzed using dynamic mechanical analysis (DMA). PPS exhibited a maximum friction coefficient with increasing load and sliding speed, while the friction coefficients of PES and PSU decreased only slightly. The wear rate of PPS was much lower than that of PES and PSU under high loads and speeds. It is suggested that the main factors influencing the friction and wear properties of the neat polymers are their condensed state and heat resistance. Amorphous PES and PSU showed liquid-like behavior and very low friction when the frictional surface was in the molten-flow state. The macromolecular crystals of crystallizable PPS give it some solid-like behavior and load-carrying capacity; hence PPS exhibited lower wear than PES and PSU.  相似文献   

9.
Abstract

Aluminum-based composites containing 0.06, 0.09, 0.12 fractions of in situ-synthesized TiC (Titanium carbide) particles have been prepared through in-melt reaction from Ai–SiC–Ti system following a simple and cost-effective stir-casting route. The TiC forms by the reaction of Ti with carbon which is released by SiC at temperatures greater than 1073 K. However, some amount of titanium aluminide (Al3Ti) is also formed. The formation of TiC has been confirmed through X-ray diffraction studies of the composite. The hardness and tensile strength have been found to increase with increasing amount of TiC. The friction and wear characteristics of the composites have been determined by carrying out dry sliding tests on pin-on-disc machine at different loads of 9.8 N, 19.6 N, 29.4 N, 39.2 N at a constant sliding speed of the 1 m/s speed. The wear rate i.e. volume loss per unit sliding distance has been found to increase linearly with increasing load following Archard’s law. However, both the wear rate and friction coefficient have been observed to decrease with increasing amount of TiC in the composite. This has been attributed to (i) a relatively higher hardness of composites containing relatively higher amount of TiC resulting in a relatively lower real area of contact and (ii) the formation of a well-compacted mechanically mixed layer of compacted wear debris on the worn surface which might have inhibited metal–metal contact and resulted in a lower wear rate as well as friction coefficient.  相似文献   

10.
The effect of alkali treatment and fiber length on the wear performance of the Palmyra palm leaf stalk fiber (PPLSF)–polyester composites and the possibilities for using PPLSF in wear resistance applications were explored at different speeds and normal loads for constant sliding distance using pin on disk wear tester as per the ASTM G99 standard. Unsaturated polyester was used as matrix, and composites were prepared by molding in an open mold and pouring the resin. It was observed that wear loss and coefficient of friction reduced due to reinforcement of PPLSF. Reinforcing alkali-treated PPLSF in the matrix has further reduced the wear loss and coefficient of friction. At high speed and high load condition considered in this study shows that the wear loss and coefficient of friction were reduced by 64 and 22%, respectively, for alkali-treated fiber composites compared with untreated fiber composites. The effect of fiber length on the wear performance was also evaluated and optimal set of parameters that would result in minimum wear loss and coefficient of friction was determined by design of experimental method using Taguchi’s orthogonal array. The surface morphology of the composites after wear tests was examined using scanning electron microscopy to analyze the mechanism of wear.  相似文献   

11.
The effects of copper and polytetrafluoroethylene (PTFE) on thermal conductivity and tribological behavior of polyoxymethylene (POM) composites were investigated by a hot disk thermal analyzer and an M-2000 friction and abrasion testing machine. The results indicated that the incorporation of 3 wt% copper particles into POM had little effect on the thermal conductivity of POM composites, but led to the decreased friction coefficient and wear rate of composites. As the copper content was increased, the thermal conductivity increased and reached 0.477 W m?1 K?1 for POM-25% Cu composite, an increase of 35.9% compared with that of unfilled POM, while the friction coefficient and wear rate of composites also increased. The incorporation of PTFE into POM-Cu composites had a negligible effect on the thermal conductivity of composites, but helped in the formation of a continuous and uniform transfer film and resulted in the reduction in the friction coefficient and wear rate of composites. The POM-15% Cu-10% PTFE composite, with a value of wear rate similar to unfilled POM possessed higher thermal conductivity and lower friction coefficient.  相似文献   

12.
Polyimide composites filled with aramid fiber (AF) and polytetrafluoroethylene (PTFE) were prepared by hot press molding. The thermal, mechanical, and tribological properties of the composites were studied systematically. The friction and wear behavior, sliding against GCr15 steel balls, were evaluated in a ground-based wear in space simulation facility using a ball-on-disk tribosystem. The morphologies of the worn surfaces during the sliding process of the composites were analyzed by scanning electron microscopy to reveal the wear mechanism. It was found that the heat-resisting performance and the hardness of the composites were minimally affected by the additives. The flexural strength of polyimide/AF/PTFE (PI-3) decreased when PTFE was added. The wear resistance increased and the coefficient of friction decreased due to the effect of both fillers. In vacuum, the friction coefficients of polyimide (PI-1), polyimide/AF (PI-2), and PI-3 increased slightly with sliding velocity, while the opposite results were obtained in air. With the increase of air pressure the friction coefficients of the samples increased.  相似文献   

13.
A series of polyurethane (PU)/talc composites modified by a high molecular weight hydroxyl-terminated polydimethylsiloxane (HTPDMS) were prepared. The effect of the talc content on the mechanical, wettability and tribological properties of the PU composites was studied. Tensile strength of the PU composites reached to the maximum after adding 5% talc. The water contact angles (CA) of the original surfaces and worn surfaces of the polyurethane composites were measured. The experimental results indicated that the contact angles of the worn surface increased after friction. The friction and wear experiments were tested on a MRH-3 model ring-on-block test rig at different sliding speeds and loads under dry sliding and water lubrication. Experimental results revealed that the talc contributed to largely improve the tribological properties of the PU composites. The coefficient of friction (COF) of the composites increased with increasing talc. Scanning electron microscopic (SEM) investigations showed that the worn surfaces of the talc filled PU composites were smoother than pure polyurethane under given load and sliding speed.  相似文献   

14.
A series of castor oil-based polyurethane (PU)/epoxy resin (EP) graft interpenetrating polymer network (IPN) composites modified by two kinds of hydroxy-terminated liquid nitrile rubber (HTLN) was prepared. A systematic investigation of the tribological properties of the two kinds of HTLN-modified PU/EP IPN composites was carried out through a pin-on-disk arrangement under dry sliding conditions. Experimental results revealed that the incorporation of HTLN can improve the friction and wear properties of PU/EP IPN significantly. Both the friction coefficient and wear loss decreased with increasing content of HTLN. The worn surfaces of the samples were analyzed using scanning electron microscope and a three-dimensional (3D) noncontact surface-mapping profiler; the results showed that the worn surfaces of the PU/EP IPN composites became smooth when the HTLN was added. The mechanisms for the improvement of tribological properties are discussed.  相似文献   

15.
Metal matrix composites containing titanium nitrides or titanium borides raise great interest to researchers due to their high wear resistance and enhanced corrosion properties. In the present investigation composite coatings containing both titanium nitrides/carbonitrides and titanium diborides were produced on plain steel substrates using the plasma transferred arc (PTA) technique with argon-nitrogen mixtures in the plasma and shielding gas. The microstructure of the metal matrix composites (MMC) obtained was thoroughly studied and found to consist of primary titanium diboride particles surrounded by a eutectic matrix containing, apart from ferrite, both titanium diboride and titanium carbonitride particles. The wear behavior of the composite coatings was assessed by pin on disk experiments. The wear rate against both a tool steel counterbody and an alumina counterbody is of the order of 10−4 mm3/m. The friction coefficient for both the alloyed layer-tool steel system and the alloyed layer-alumina system increases up to sliding speed of 0.30 m/s and then decreases, when the sliding speed increases further. Specifically, the friction coefficients are varied between the values 0.5 and 0.65. The wear mechanism for the tribosystem alloyed layer-tool steel is characterized by plastic deformation and adherence of material coming from the alloyed layer to the surface of the ball, while for the tribosystem alloyed layer-alumina ball, severe plastic deformation and formation of oxide layer are observed.  相似文献   

16.
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.  相似文献   

17.
《Composite Interfaces》2013,20(5):297-311
Fiber–matrix interfacial bonding plays a critical role in controlling performance properties of polymer composites. Carbon fibers have major constraints of chemical inertness with the matrix and need the surface treatment to improve the adhesion with the matrix. In this work, parametric appraisal of three-body abrasive wear behavior was presented for silane treated carbon fabric reinforced epoxy (C-E) composites with and without silane treated silicon carbide (SiC) as filler. The fiber content was fixed at 60?wt.%, while the weight fraction of SiC was varied (5 and 10?wt.%) to obtain three different compositions. Three-body abrasive wear tests were conducted using design of experiments approach based on Taguchi’s orthogonal arrays. The findings of experiments indicate that the wear loss is greatly influenced by load and grain size of abrasive. An optimal parameter combination was determined, which leads to maximization of abrasion resistance. Inclusion of SiC filler reasonably increased the abrasion resistance of C-E composite. Analysis of variance results showed that the load significantly influenced the abrasion of SiC filled C-E composites. Efforts were also made to correlate the abrasive wear performance of SiC filled C-E composites using artificial neural network (ANN). The wear behavior of composite by ANN prediction closely matched the experimental results and finally, optimal wear settings for minimum wear were identified.  相似文献   

18.
Wear resistance of reactive plasma sprayed TiB2-TiC0.3N0.7 based composite coatings and the as-sprayed coating with laser surface treatment was investigated using plate-on-plate tests. Wear tests were performed at different normal loads and sliding speeds under dry sliding conditions in air. The surface morphologies of counterparts against as-sprayed and laser remelted coatings were investigated. The microstructure and chemical composition of wear debris and coatings were studied using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), respectively. The results show that the wear resistance of the laser remelted coating is improved significantly due to their increased microhardness and reduced flaws. The primary wear mechanism of the remelted coating is oxidation wear and its minor wear mechanisms are grain abrasion and fatigue failure during the course of wear test. In contrast, the primary wear mechanism of the as-sprayed coating is grain abrasion at the low sliding speed (370 rpm) and fatigue failure at the high sliding speed (549 rpm). The oxidation wear mechanism is a minor contributor for the as-sprayed coating.  相似文献   

19.
In this study, the effect of TiC nanoparticles as a reinforcement on the mechanical and tribological properties of Aluminum-based self lubricating composite was investigated. The microstructure, relative density, hardness, and tribological properties of Al/graphite and Al/TiC/graphite composites were examined as a function of graphite content. The tribo-surfaces of the samples were analyzed using SEM and EDS elemental mapping. The results indicated that the addition of TiC nanoparticles not only decreased the wear rate and coefficient of friction of the composites, but also facilitated the formation of a stable graphite layer at longer sliding distances and high sliding velocities by forming a durable graphite/TiC composite on the tribo-surface. Therefore, the stability of graphite layer can be considered as a possible cause for decrease in wear rate of the Al/TiC/graphite composite.  相似文献   

20.
Radiopaque composites have been produced from flame-made ytterbium/silica mixed oxide within a crosslinked methacrylate resin matrix. The refractive index of the filler powder increased with ytterbium oxide loading. A high transparency was achieved for a matching refractive index of the filler powder and the polymer in comparison to commercial materials with 52 wt% ceramic filling. It was demonstrated that powder homogeneity with regard to particle morphology and distribution of the individual metal atoms is essential to obtain a highly transparent composite. In contrast, segregation of crystalline single-oxide phases drastically decreased the composite transparency despite similar specific surface areas, refractive indices and overall composition. The superior physical strength, transparency and radiopacity compared to composites made from conventional silica based-fillers makes the flame-made mixed-oxide fillers especially attractive for dental restoration materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号