首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly swollen hydrogels made by the polymerization of acrylamide (AAm) with some anionic monomers such as citraconic acid (CITA) and sodium acrylate (SA) were investigated as a function of composition to find materials with swelling and dye sorption properties. Highly swollen AAm/CITA/SA or AAm/SA/CITA hydrogels were prepared by free radical solution polymerization in aqueous solutions of AAm with CITA and SA as co‐monomers and two multifunctional crosslinkers such as ethylene glycol dimethacrylate (EGDMA) and 1,4‐butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. Chemically crosslinked AAm/CITA/SA or AAm/SA/CITA hydrogels were used in experiments on sorption of water‐soluble monovalent cationic dye such as “Nil blue” (Basic Blue 12; BB 12). Equilibrium percentage swelling values of AAm/CITA/SA or AAm/SA/CITA hydrogels were calculated in the range of 1797–22,098%. Some swelling kinetic parameters were found. Diffusion behavior of water was investigated. Water diffusion into the hydrogels was found to be non‐Fickian in character. For sorption of cationic dye, BB 12 into the hydrogels was studied by batch sorption technique at 25°C. AAm/CITA/SA or AAm/SA/CITA hydrogels in the dye solutions showed coloration, whereas AAm hydrogel did not show sorption of any dye from the solution. The sorption capacity of AAm/CITA/SA or AAm/SA/CITA hydrogels was investigated. At the end of the experiments, 21.70–78.91% BB 12 adsorptions were determined. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
《European Polymer Journal》2002,38(11):2133-2141
Superswelling acrylamide (AAm)/maleic acid (MA) hydrogels were prepared by free radical polymerization in aqueous solution of AAm with MA as comonomer with some multifunctional crosslinkers such as trimethylolpropane triacrylate and 1,4-butanediol dimethacrylate. AAm/MA hydrogels were used in experiments on swelling and adsorption of a water-soluble monovalent cationic dye such as Basic Blue 17 (Toluidin Blue). As a result of dynamic swelling tests, the influence of relative content of MA on the swelling properties of the hydrogel systems was examined. AAm/MA hydrogels were swollen in the range 1660-6050% in water, while AAm hydrogels swelled in the range 780-1360%. Equilibrium water content of AAm/MA hydrogels were calculated in the range 0.8873-0.9837. Water intake of hydrogels followed a non-Fickian type diffusion. The uptake of the cationic dye, BB-17 to AAm/MA hydrogels is studied by batch adsorption technique at 25 °C. In the experiments of the adsorption equilibrium, S-type adsorption in Giles's classification system was found. The binding ratio of hydrogel/dye systems was gradually increased with the increase of MA content in the AAm/MA hydrogels.  相似文献   

3.
Acrylamide/itaconic acid (AAm/IA) hydrogels containing different quantities of itaconic acid have been irradiated with γ radiation. The hydrogels were used in an experiment concerning the adsorption of cationic dyes such as Basic Blue 9, Basic Violet 1 and Basic Blue 12. In the experiments of the adsorption of dyes from their synthetic aqueous solutions, type S adsorption isotherms were found. One mole of monomeric unit of AAm/IA hydrogels adsorbed 78.5–513.1 μmole of Basic Blue 9, 60.2–641.1 μmole of Basic Violet 1 and, 28.8–593.3 μmole of Basic Blue 12, while acrylamide hydrogel did not adsorb any cationic dye. As a result, it was shown that the AAm/IA hydrogels could be used as an adsorbent for water pollutants such as dyes, and immobilization of these organic contaminants in the hydrogels from waste water can solve one of the most important environmental problems of the textile industry. © 1997 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, acrylamide-based hydrogels are synthesized by free radical solution polymerization in aqueous solution using ethylene glycol dimethacrylate (EGDMA) and its derivative polyethylene glycol dimethacrylate (PEGDMA) with different molecular weights as crosslinkers in the solution medium. The Fourier transform infrared spectroscopy technique is used for the structural characterization of the hydrogels. Dynamic swelling tests are conducted on acrylamide-based hydrogels for the determination of the swelling characteristics with respect to different crosslinking concentrations at room temperature. The parameters of swelling kinetics and diffusion mechanisms of the hydrogels are calculated with the aid of the data obtained. Accordingly, PEGDMA and EGDMA absorption capacity is found to increase with increasing concentrations. The lowest and highest water absorption capacities in PEGDMA810 and EGDMA crosslinked hydrogels are 22.73–48.39 and 10.15–16.02 g/g, respectively. Water intake of hydrogels crosslinked by EGDMA and PEGDMAs followed Fickian nature type diffusion except for PEGDM810, which has a swelling exponent greater than 0.5 and so does not follow a Fickian type of diffusion. PEGDM810 showed the fastest diffusion rate of between 5.87 × 10?4 and 10.87 × 10?4 cm2 s?1.  相似文献   

5.
New ternary semi interpenetrating polymer networks (semi‐IPNs) systems containing acrylamide (AAm), 1‐vinylimidazole (VI) and poly (ethylene glycol) (PEG) have been prepared. AAm/VI hydrogels and semi‐IPN's, poly (AAm/VI/PEG) with 0.25, 0.50, 0.75 and 1.00 g of PEG (per 1.00 g AAm) were prepared by free radical solution polymerization in aqueous solution of AAm with VI as comonomer and a multifunctional crosslinker such as 1,4 butanediol dimethacrylate (BDMA). Swelling experiments were performed in water at 25°C, gravimetrically. The influence of VI and PEG content in hydrogels were examined. AAm/VI and AAm/VI/PEG hydrogels showed large extents of swelling in aqueous media, the swelling being highly dependent on the chemical composition of the hydrogels. Percentage swelling ratio of AAm/VI hydrogels and AAm/VI/PEG hydrogels was shown as 650–4167%. The values of equilibrium water content (EWC) of the hydrogels are between 0.8990 and 0.9750. Diffusion behavior was investigated. Water diffusion into hydrogels was found to be non‐Fickian in character. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
In this investigation, poly(acrylamide‐co‐potassium methacrylate‐co‐maleic acid) hydrogels, poly(AAm‐KMA‐MA) were synthesized by redox copolymerization in aqueous solution. The effect of reaction parameters, such as concentration of maleic acid, crosslinking agent, initiator and activator, on the swelling behavior was investigated in detail. The swelling/diffusion characteristics were also evaluated for 1,4‐butanediol diacrylate (BDDA) and 1,2‐ethyleneglycol dimethacrylate (EGDMA) crosslinked hydrogels having different amounts of maleic acid. The results indicate that the water diffusion of hydrogels was of a non‐Fickian type. The hydrogels were characterized by IR spectroscopy and thermogravimetric analysis (TGA). Their surface characteristics were observed by using scanning electron microscopy (SEM). Furthermore, their swelling phenomena in different pH and salt solutions and simulated biological fluids was also studied.  相似文献   

7.

Acrylamide (AAm)/Acrylic Acid (AAc) copolymers have been prepared by gamma irradiation of binary mixtures at three different compositions where the acrylamide/acrylic acid mole ratios varied around 15, 20, and 30%. Threshold dose for 100% conversion of monomers into hydrogels was found to be 8.0 kGy. Poly(Acrylamide‐co‐Acrylic Acid) (poly(AAm‐co‐AAc)) hydrogels have been considered for the removal of uranyl ions from aqueous solutions. Swelling behavior of these hydrogels was determined in distilled water at different pH values and in aqueous solutions of uranyl ions. The results of swelling tests at pH 8.0 indicated that poly(AAm‐co‐AAc) hydrogel, containing 15% acrylamide showed maximum % swelling. Diffusion of water and aqueous solutions of uranyl ion into hydrogels was found to be non‐Fickian in character and their diffusion coefficients were calculated. The effect of pH, composition of hydrogel, and concentration of uranyl ions on the adsorption process were studied at room temperature. It was found that one gram of dry poly(AAm‐co‐AAc) hydrogel adsorbed 70–320 mg and 70–400 mg uranyl ions from aqueous solutions of uranyl nitrate and uranyl acetate in the initial concentration range of 50–1500 mg UO2 2+L?, depending on the amount of AAc in the hydrogels, respectively. Adsorption isotherms were constructed for poly(AAm‐co‐AAc)–uranyl ion system indicating an S type of adsorption in the Giles classification system. It is concluded that crosslinked poly(AAm‐co‐AAc) hydrogels can be successfully used for the removal of uranyl ions from their aqueous solutions.  相似文献   

8.
Acrylamide (AAm)‐2‐acrylamide‐2‐methylpropanesulfonic acid sodium salt (AMPSNa) hydrogel and AAm‐AMPSNa/clay hydrogel nanocomposite having 10 w% clay was prepared by in situ copolymerization in aqueous solution in the presence of a crosslinking agent (N,N′‐methylenebisacrylamide (NMBA)). Swelling properties and kinetics of the hydrogel samples were investigated in water and aqueous solutions of the Safranine‐T (ST) and Brilliant Cresyl Blue (BCB) dyes. The swelling and diffusion parameters were also calculated in water and dye solutions. It was observed that the AAm‐AMPSNa/clay hydrogel nanocomposite exhibits improved swelling capacity compared with the AAm‐AMPSNa hydrogel. It was also found that the diffusion mechanisms show non‐Fickian character. Adsorption properties of the hydrogel samples in the aqueous solution of ST and BCB dyes were also investigated. Clay incorporation into the hydrogel structure increased not only the adsorption capacity but also the adsorption rate. Adsorption capacity values of the hydrogel nanocomposite were found to be 484.2 and 494.2 mg g?1 for the ST and BCB dyes, respectively. It was seen that the adsorption of dyes by the hydrogel nanocomposite completed in 10 min while the AAm‐AMPSNa hydrogel adsorbed dyes approximately in 90 min. Adsorption data of the samples were modelled by the pseudo‐first‐order and pseudo‐second‐order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of hydrogel nanocomposite followed a pseudo‐second‐order model. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Langmuir model fits the adsorption data better than the Freundlich model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Poly(N,N-dimethylamino ethylmethacrylate) [P(DMAEMA)] hydrogels were prepared by irradiating the ternary mixtures of dimethylamino ethylmethacrylate (DMAEMA)/ethyleneglycol dimethacrylate (EGDMA)/water (H2O) by γ-rays at ambient temperature. The swelling of four types of DMAEMA hydrogels in distilled water is higher than the swelling of these hydrogels in dye solutions. The value of equilibrium swelling of P(DMAEMA)1 hydrogel was 338% at pH 7.0 in distilled water, while it was 325% and 326% at pH 7.0 in Apollofix Red (AR) and Apollofix Yellow (AY) solutions, respectively. The adsorption capacity of P(DMAEMA)1 hydrogel was found to increase from 85 to 131 mg for AR g−1 dry gel and from 58 to 111 mg for AY g−1 dry gel with decreasing pH of the dye solutions.  相似文献   

10.
In this study, acrylamide (AAm)/aconitic acid (ACA) copolymers were prepared with two different mol% of aconitic acid 4%, 17% and were irradiated with gamma irradiation at different irradiation doses (4 - 25kGy). The percent yield was assigned by gravimetrical method. The effect of irradiation dose, pH and involved amounts of monomers (AAm/ACA) in hydrogels on swelling properties were investigated. The conversion of monomers to hydrogels was 100% at 25kGy. Poly(acrylamide-co-aconitic acid) P(AAm/ACA) hydrogels have been used for the adsorption of some aqueous solutions of dyes such as Methylene Blue (MB) and Safranine-O (S). The hydrogels were swollen in distilled water at pH 3, 5, 7, 8 and in aqueous solutions of dyes. The initial swelling rates of hydrogels are increased by increasing of pH. The effects of concentration of the aqueous solutions of dye and hydrogel composition on the adsorption were investigated. The adsorption is increased and changed depending on the structure of dye and composition of hydrogel.  相似文献   

11.
Abstract

Polystyrene‐supported polyoxyethylene (PSPOE) bound permanganate with varying crosslinking agents have been prepared and used as a new class of recyclable oxidizing agents for low molecular weight alcohols and aldehydes. The effect of the nature of crosslinking agents on the oxidation reactions was studied in detail. The crosslinking agents used were ethyleneglycol dimethacrylate (EGDMA), 1,4‐butanediol dimethacrylate (BDDMA), and 1,6‐hexanediol diacrylate (HDODA). Polymer supports were synthesized by free radical suspension polymerization. Chloromethylation was done using the Friedel‐Crafts reaction. A cyclic polyether type compound was developed by the reaction of functionlized resin with polyethylene glycol (PEG600) and sodium. Polystyrene‐supported polyoxyethylene was equilibrated with potassium permanganate in benzene to give the oxidizing agent. The results reveal that the reactivity of HDODA‐crosslinked system shows higher reactivity than the BDDMA, and EGDMA‐crosslinked systems. This is due to higher flexibility of the HDODA‐crosslinked system compared to the BDDMA, and EGDMA‐crosslinked systems. The effect of solvent, temperature, and molar concentration of the reagent on oxidation were carried out using benzoin to benzil as the model reaction. For a less flexibile EGDMA‐crosslinked resin, tetrahydrofuran (THF) is the best solvent, for BDDMA‐crosslinked system dioxane and for the highly flexible HDODA‐crosslinked system CHCl3 is found to be best. In all cases, the reactivity of the reagent increased with an increase in temperature and molar excess of the reagent.  相似文献   

12.

Hydrogels based essentially on N‐isopropylacrylamide (NIPAAm) and different ratios of ethylene glycol dimethacrylate (EGDMA) monomer were synthesized by gamma radiation copolymerization. The thermal decomposition behavior of NIPAAm/EGDMA hydrogels was determined by thermogravimetric analysis (TGA). The effect of temperature and pH on the swelling behavior was also studied. The results showed that the ratio of EGDMA in the comonomer feeding solution has a great effect on the yield product, gel fraction and water content in the final hydrogel. In this regard, it was observed that the increase of EGDMA ratio decreased these properties. The TGA study showed that all the compositions of NIPAAm/EGDMA hydrogels displayed higher thermal stability than the hydrogel based on pure PNIPAAm hydrogel. The swelling kinetics in water showed that pure PNIPAAm and NIPAAm/EGDMA hydrogels reached equilibrium after 6 h. However, NIPAAm/EGDMA hydrogels show swelling in water lower than pure PNIPAAm. The results showed that the swelling character of pure PNIPAAm and NIPAAm/EGDMA hydrogels was affected by the change in temperature within the temperature range 25–40°C, and showed a reversible change in swelling in the pH range 4–7 depending on composition.  相似文献   

13.
13C labeled ethylene glycol dimethacrylate (EGDMA) was used to form labeled crosslinked PMMA and model 13C labeled pendant double bond copolymers. Solution NMR was possible on solvent-swollen samples containing less than 0.5% by weight EGDMA. Spectra confirm significant amounts of singly reacted EGDMA in fully polymerized networks. Peaks arising from the two most likely stereochemical triads (syndi- and heterotactic) were identified but no evidence of cyclic species was observed. Labeled EGDMA allowed observation of the crosslink site at concentrations as low as 0.02 wt-% EGDMA.  相似文献   

14.
In this study, radiation synthesis and characterization of swelling behavior and network structure of poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), and poly(N,N-dimethylaminoethyl methacrylate-co-N-vinyl 2-pyrrolidone) (P(DMAEMA-co-VP)), hydrogels were investigated. PDMAEMA and P(DMAEMA-co-VP) hydrogels in the rod forms were prepared by irradiating the ternary mixtures of DMAEMA/VP/cross-linking agent, ethyleneglycol dimethacrylate (EGDMA), by gamma rays at ambient temperature. In composition ranges where the three components were completely miscible, water was also added to the ternary mixture to provide the formation of homogeneous polymerization and gelation. The influence of irradiation dose, comonomer, VP, and cross-linking agent, EGDMA, content on the total percentage gelation and monomer conversion were investigated. The effect of pH and temperature on the swelling behavior of hydrogels have also been examined. Hydrogels showed typical pH response and temperature responses, such as low-pH and low temperature swelling and high-pH and high temperature deswelling. Polymer-solvent interaction parameter (χ) and enthalpy and entropy changes appearing in the χ parameter for the P(DMAEMA-co-VP)-water system were determined by using Flory-Rehner theory of swelling equilibrium. The negative values for ΔH and ΔS indicate that prepared pure PDMAEMA and P(DMAEMA-co-VP) hydrogels have lower critical solution temperature (LCST) and Flory-Rehner theory of swelling equilibrium provides a satisfactory agreement to the experimental swelling data of the hydrogels.  相似文献   

15.
Temperature and pH sensitive 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and methacrylic acid (MAA) homopolymer and copolymer hydrogels have been prepared using N,N′-methylenebisacrylamide (MBA) and ethylene glycol dimethacrylate (EGDMA) as crosslinkers. Swelling of these hydrogels has been studied in terms of monomer ratio, type and concentration of the crosslinkers and in various concentrations of mono, di and trivalent salt solutions. Though swelling of the EGDMA crosslinked poly(AMPS-co-MAA) hydrogels is found to be higher than those based on MBA crosslinker, strength of the latter system has been found to be better. Swelling behavior of these hydrogels in different salt solutions at different concentrations has shown a drop in swelling from monovalent to trivalent cations and also at higher salt concentrations. The results have indicated the possibilities of developing tailor made hydrogels combining optimum swelling with better strength characteristics that will suit different physiological and biological environments.  相似文献   

16.
This research aims to fabricate and characterize chemically crosslinked CMC/PVP-co-poly (AMPS) based hydrogel for the sustained release of model drug metoprolol tartrate through the free radical polymerization technique. Box-Behnken Design was used to optimize CMC/PVP-co-poly (AMPS) hydrogel by varying the content of reactants such as; polymers (CMC and PVP), monomer (AMPS), and crosslinker (EGDMA). Carboxymethyl cellulose (CMC) was crosslinked chemically with AMPS with a constant ratio of PVP by the ethylene glycol dimethacrylate as the crosslinker in the presence of sodium hydrogen sulfite (SHS)/ammonium peroxodisulfate (APS) as initiators. After developing CMC-based hydrogels using different polymers, monomer, and crosslinker concentrations, this study encompassed dynamic swelling, sol–gel fraction, drug release and chemical characterizations such as FTIR, XRD, TGA, DSC, and SEM. In vitro drug release and swelling were performed at 1.2 and 6.8 pH to determine the sustained release pattern and pH-responsive behavior. These parameters depended on the crosslinker, polymer, and monomer ratios used in the formulation development. XRD, SEM, and FTIR showed the successful grafting of constituents resulting in the formation of a stable hydrogel. DSC and TGA confirmed the thermodynamic stability of the hydrogel. Hydrogel swelling was increased with an increase in the ratio of monomer; however, an increase in the ratio of polymer and crosslinker decreased the hydrogel swelling. In vitro gel fraction and drug release also depended on polymer, monomer, and crosslinker ratios. The fabricated CMC/PVP-co-poly (AMPS) hydrogels constituted a potential system for sustained drug delivery.  相似文献   

17.
The sorptive potential of some lignocellulosic agro-industrial wastes (sunflower seed shells and corn cob) for Basic Blue 9 cationic dye removal from aqueous solutions was examined using the batch technique. The Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models were used in order to determine the quantitative parameters of sorption. The Langmuir isotherm model indicated a maximum sorption capacity for these materials in the range of 40–50 mg dye per g (25°C), slightly higher for corn cob than for sunflower seed shells. The values of the thermodynamic parameters showed that the retention of cationic dye is a spontaneous and endothermic process. The application of pseudo-first order and pseudo-second order intraparticle diffusion models, and a Boyd — Reichenberg model for kinetic data interpretation suggested that sorption of Basic Blue 9 dye onto the studied materials is a process where both surface sorption and intraparticle diffusion contributed to the rate-limiting step. These lignocellulosic wastes can be used with good efficiency for dye removal from aqueous effluents.   相似文献   

18.
In this study, (sodium alginate (NaAlg)/acrylamide (AAm)) interpenetrating polymer networks (IPN) have been prepared at three different compositions, where the sodium alginate composition varies 1, 2, and 3% (w/v) in 50% (w/v) acrylamide solutions. These solutions have been irradiated with a 60Co‐γ source at different doses. The percent conversion was determined gravimetrically and 100% gelation was achieved at the 10.0 kGy dose. The swelling results at pH 7.0 and 9.0 indicated that (NaAlg/AAm)3IPN hydrogel, containing 3% NaAlg showed maximum % swelling in water, with swelling increasing in the order of Ni2+>Cd2+>Pb2+. Diffusion in aqueous solutions of metal ions within (NaAlg/AAm)IPN hydrogels was found to be Fickian character. Diffusion coefficients of (NaAlg/AAm)IPN hydrogels in water and aqueous solutions of metal ions were calculated. The maximum weight loss temperature and half life temperature for NaAlg, PAAm, (NaAlg/AAm)IPN and (NaAlg/AAm)IPN‐metal ion systems were found from thermal analysis studies. In the adsorption experiments, the efficiency of (NaAlg/AAm)IPN hydrogels to adsorb nickel, cadmium and lead ions from water was studied. (NaAlg/AAm)IPN hydrogels showed different adsorption for different aqueous solution of metal ion at pH 7.0. Adsorption isotherms were constructed for the (NaAlg/AAm)IPN‐metal ion systems. S type adsorption in the Giles classification system was found.  相似文献   

19.
In this study, new hydrogels in rod shape were prepared from N-acryloyl-tris-(hydroxymethyl)aminomethane (NAT) using three different crosslinking agents: poly(2-methyl-2-oxazoline) bismacromonomer (BM), ethylene glycol dimethacrylate (EGDMA) and N,N′-methylenebisacrylamide (BIS). Dimethylformamide (DMF) was used as solvent and 2,2′-azobisisobutyronitrile (AIBN) as initiator. Polymeric matrices with different properties were obtained by free radical polymerization by changing the crosslinker (BM, EGDMA or BIS) or the concentration of BM. The hydrogel structures were characterized by high resolution magic angle spinning (HRMAS) NMR technique. Swelling experiments and rheological studies were used to test the water absorption capacity and viscoelastic properties of the hydrogels, respectively. For a given NAT/crosslinking agent molar ratio, the hydrogel synthesized with BM displays higher water absorptive capacity and larger range of linear viscoelasticity than those synthesized with BIS or EGDMA. The relatively larger hydrophilic character of the former and the lower crosslinking density generated by the longer molecules of BM might be the cause of this behavior. The results also reveal that water diffuses into the network following a non-Fickian mechanism. This is concluded from the value of the diffusion exponent n, which is higher than 0.50. The elastic modulus and the equilibrium water content (EWC) measurements suggest that these materials may have potential application as biomaterials.  相似文献   

20.
Several hydrogels were prepared using radiolytic polymerization of aqueous solutions of acrylamide or acrylamide containing appropriate comonomer such as acrylic acid, maleic acid, itaconic acid, and maleic anhydride. The hydrogels have been prepared at an irradiation dose of 30 kGy. The effects of the chemical structure of the monomer(s) and crosslinking agents on the yield of homopolymer(s) or copolymers have been studied. These crosslinking agents include N, N′‐methylene dimethacrylate (MDA) and N, N′‐methylene bisallyamide (MBA). The hydrogels obtained were characterized using swelling technique, thermal and spectroscopic analysis. The results obtained showed that the prepared samples are able to reject sodium ions and are not able to recover the Basic Blue Dye from their aqueous solution. © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号