首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A graph G is hypohamiltonian if it is not Hamiltonian but for each \(v\in V(G)\), the graph \(G-v\) is Hamiltonian. A graph is supereulerian if it has a spanning Eulerian subgraph. A graph G is called collapsible if for every even subset \(R\subseteq V(G)\), there is a spanning connected subgraph H of G such that R is the set of vertices of odd degree in H. A graph is reduced if it has no nontrivial collapsible subgraphs. In this note, we first prove that all hypohamiltonian cubic graphs are reduced non-supereulerian graphs. Then we introduce an operation to construct graphs from hypohamiltonian cubic graphs such that the resulting graphs are 3-edge-connected non-supereulerian reduced graphs and cannot be contracted to a snark. This disproves two conjectures, one of which was first posed by Catlin et al. in [Congr. Num. 76:173–181, 1990] and in [J. Combin. Theory, Ser B 66:123–139, 1996], and was posed again by Li et al. in [Acta Math. Sin. English Ser 30(2):291–304, 2014] and by Yang in [Supereulerian graphs, hamiltonicity of graphs and several extremal problems in graphs, Ph. D. Dissertation, Université Paris-Sub, September 27, 2013], respectively, the other one was posed by Yang 2013.  相似文献   

2.
A clique is defined as a complete subgraph maximal under inclusion and having at least two vertices. A k-clique-coloring of a graph G is an assignment of k colors to the vertices of G such that no clique of G is monochromatic. Bacsó et al. (SIAM J Discrete Math 17:361–376, 2004) noted that the clique-coloring number is unbounded even for the line graphs of complete graphs. In this paper, we prove that a claw-free graph with maximum degree at most 7, except an odd cycle longer than 3, has a 2-clique-coloring by using a decomposition theorem of Chudnovsky and Seymour (J Combin Theory Ser B 98:839–938, 2008) and the limitation of the degree 7 is necessary since the line graph of \(K_{6}\) is a graph with maximum degree 8 but its clique-coloring number is 3 by the Ramsey number \(R(3,3)=6\). In addition, we point out that, if an arbitrary line graph of maximum degree at most d is m-clique-colorable (\(m\ge 3\)), then an arbitrary claw-free graph of maximum degree at most d is also m-clique-colorable.  相似文献   

3.
The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.  相似文献   

4.
We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies such us (Amat et al. Aequat. Math. 69(3), 212–223 2015; Amat et al. J. Math. Anal. Appl. 366(3), 24–32 2010; Behl, R. 2013; Bruns and Bailey Chem. Eng. Sci. 32, 257–264 1977; Candela and Marquina. Computing 44, 169–184 1990; Candela and Marquina. Computing 45(4), 355–367 1990; Chun. Appl. Math. Comput. 190(2), 1432–1437 2007; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2007; Deghan. Comput. Appl Math. 29(1), 19–30 2010; Deghan. Comput. Math. Math. Phys. 51(4), 513–519 2011; Deghan and Masoud. Eng. Comput. 29(4), 356–365 15; Cordero and Torregrosa. Appl. Math. Comput. 190, 686–698 2012; Deghan and Masoud. Eng. Comput. 29(4), 356–365 2012; Ezquerro and Hernández. Appl. Math. Optim. 41(2), 227–236 2000; Ezquerro and Hernández. BIT Numer. Math. 49, 325–342 2009; Ezquerro and Hernández. J. Math. Anal. Appl. 303, 591–601 2005; Gutiérrez and Hernández. Comput. Math. Appl. 36(7), 1–8 1998; Ganesh and Joshi. IMA J. Numer. Anal. 11, 21–31 1991; González-Crespo et al. Expert Syst. Appl. 40(18), 7381–7390 2013; Hernández. Comput. Math. Appl. 41(3-4), 433–455 2001; Hernández and Salanova. Southwest J. Pure Appl. Math. 1, 29–40 1999; Jarratt. Math. Comput. 20(95), 434–437 1966; Kou and Li. Appl. Math. Comput. 189, 1816–1821 2007; Kou and Wang. Numer. Algor. 60, 369–390 2012; Lorenzo et al. Int. J. Interact. Multimed. Artif. Intell. 1(3), 60–66 2010; Magreñán. Appl. Math. Comput. 233, 29–38 2014; Magreñán. Appl. Math. Comput. 248, 215–224 2014; Parhi and Gupta. J. Comput. Appl. Math. 206(2), 873–887 2007; Rall 1979; Ren et al. Numer. Algor. 52(4), 585–603 2009; Rheinboldt Pol. Acad. Sci. Banach Ctr. Publ. 3, 129–142 1978; Sicilia et al. J. Comput. Appl. Math. 291, 468–477 2016; Traub 1964; Wang et al. Numer. Algor. 57, 441–456 2011) using hypotheses up to the fifth derivative, our sufficient convergence conditions involve only hypotheses on the first Fréchet-derivative of the operator involved. The dynamics of the family for choices of the parameters such that it is optimal is also shown. Numerical examples are also provided in this study  相似文献   

5.
We present a local convergence analysis of Gauss-Newton method for solving nonlinear least square problems. Using more precise majorant conditions than in earlier studies such as Chen (Comput Optim Appl 40:97–118, 2008), Chen and Li (Appl Math Comput 170:686–705, 2005), Chen and Li (Appl Math Comput 324:1381–1394, 2006), Ferreira (J Comput Appl Math 235:1515–1522, 2011), Ferreira and Gonçalves (Comput Optim Appl 48:1–21, 2011), Ferreira and Gonçalves (J Complex 27(1):111–125, 2011), Li et al. (J Complex 26:268–295, 2010), Li et al. (Comput Optim Appl 47:1057–1067, 2004), Proinov (J Complex 25:38–62, 2009), Ewing, Gross, Martin (eds.) (The merging of disciplines: new directions in pure, applied and computational mathematics 185–196, 1986), Traup (Iterative methods for the solution of equations, 1964), Wang (J Numer Anal 20:123–134, 2000), we provide a larger radius of convergence; tighter error estimates on the distances involved and a clearer relationship between the majorant function and the associated least squares problem. Moreover, these advantages are obtained under the same computational cost.  相似文献   

6.
The aim of this paper is to study the spanning power of options in a static financial market that allows non-integrable assets. Our findings extend and unify the results in Galvani (J Math Econ 45(1):73–79, 2009), Galvani and Troitsky (J Math Econ 46(4):616–619, 2010) and Nachman (Rev Financ Stud 1(3):311–328, 1988) for \(L_p\)-models. We also apply the spanning power properties to the pricing problem. In particular, we show that prices on call and put options of a limited liability asset can be uniquely extended by arbitrage to all marketed contingent claims written on the asset.  相似文献   

7.
In this paper we will continue the analysis undertaken in Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), Bongiorno et al. (Rocky Mt J Math 40(6):1745–1777, 2010), Triolo (Rend Circ Mat Palermo (2) 60(3):409–416, 2011) on the general problem of extending the noncommutative integration in a *-algebra of measurable operators. As in Aiena et al. (Filomat 28(2):263–273, 2014), Bagarello (Stud Math 172(3):289–305, 2006) and Bagarello et al. (Rend Circ Mat Palermo (2) 55:21–28, 2006), the main problem is to represent different types of partial *-algebras into a *-algebra of measurable operators in Segal’s sense, provided that these partial *-algebras posses a sufficient family of positive linear functionals (states) (Fragoulopoulou et al., J Math Anal Appl 388(2):1180–1193, 2012; Trapani and Triolo, Stud Math 184(2):133–148, 2008; Trapani and Triolo, Rend Circolo Mat Palermo 59:295–302, 2010; La Russa and Triolo, J Oper Theory, 69:2, 2013; Triolo, J Pure Appl Math, 43(6):601–617, 2012). In this paper, a new condition is given in an attempt to provide a extension of the non commutative integration.  相似文献   

8.
We prove finiteness and diameter bounds for graphs having a positive Ricci-curvature bound in the Bakry–Émery sense. Our first result using only curvature and maximal vertex degree is sharp in the case of hypercubes. The second result depends on an additional dimension bound, but is independent of the vertex degree. In particular, the second result is the first Bonnet–Myers type theorem for unbounded graph Laplacians. Moreover, our results improve diameter bounds from Fathi and Shu (Bernoulli 24(1):672–698, 2018) and Horn et al. (J für die reine und angewandte Mathematik (Crelle’s J), 2017,  https://doi.org/10.1515/crelle-2017-0038) and solve a conjecture from Cushing et al. (Bakry–Émery curvature functions of graphs, 2016).  相似文献   

9.
Following Escobar (J Funct Anal 150(2):544–556, 1997) and Jammes (Ann l’Inst Fourier 65(3):1381–1385, 2015), we introduce two types of isoperimetric constants and give lower bound estimates for the first nontrivial eigenvalues of Dirichlet-to-Neumann operators on finite graphs with boundary respectively.  相似文献   

10.
We prove a positive combinatorial formula for the Schur expansion of LLT polynomials indexed by a 3-tuple of skew shapes. This verifies a conjecture of Haglund (Proc Natl Acad Sci USA 101(46):16127–16131, 2004). The proof requires expressing a noncommutative Schur function as a positive sum of monomials in Lam’s (Eur J Combin 29(1):343–359, 2008) algebra of ribbon Schur operators. Combining this result with the expression of Haglund et al. (J Am Math Soc 18(3):735–761, 2005) for transformed Macdonald polynomials in terms of LLT polynomials then yields a positive combinatorial rule for transformed Macdonald polynomials indexed by a shape with 3 columns.  相似文献   

11.
We provide two new characterizations of the Takagi function as the unique bounded solution of some systems of two functional equations. The results are independent of those obtained by Kairies (Wy? Szko? Ped Krakow Rocznik Nauk Dydakt Prace Mat 196:73–82, 1998), Kairies (Aequ Math 53:207–241, 1997), Kairies (Aequ Math 58:183–191, 1999) and Kairies et al. (Rad Mat 4:361–374, 1989; Errata, Rad Mat 5:179–180, 1989).  相似文献   

12.
It is generally thought that truthmaking has to be an internal relation because if it weren’t, then, as David Armstrong argues, “everything may be a truthmaker for any truth” (1997: 198). Depending on whether we take an internal relation to be one that is necessitated by the mere existence of its terms (Armstrong 1997: 87 and 2004: 9) or one that supervenes on the intrinsic properties of its relata (Lewis 1986: 62), the truthbearers involved in the truthmaking relation must either have their contents essentially or intrinsically. In this paper, I examine Armstrong’s account (1973; 1997 and 2004), according to which what is made true at the fundamental level are mental state tokens. The conclusion is reached that such tokens have their contents neither essentially nor intrinsically, and so, are simply the wrong kind of entities to be made true internally.  相似文献   

13.
The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [32], [33], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not specified which notion of spectrum underlies the theorem.  相似文献   

14.
We consider the problem of hedging a European contingent claim in a Bachelier model with temporary price impact as proposed by Almgren and Chriss (J Risk 3:5–39, 2001). Following the approach of Rogers and Singh (Math Financ 20:597–615, 2010) and Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), the hedging problem can be regarded as a cost optimal tracking problem of the frictionless hedging strategy. We solve this problem explicitly for general predictable target hedging strategies. It turns out that, rather than towards the current target position, the optimal policy trades towards a weighted average of expected future target positions. This generalizes an observation of Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b) from their homogenous Markovian optimal investment problem to a general hedging problem. Our findings complement a number of previous studies in the literature on optimal strategies in illiquid markets as, e.g., Gârleanu and Pedersen (Dynamic portfolio choice with frictions. Preprint, 2013b), Naujokat and Westray (Math Financ Econ 4(4):299–335, 2011), Rogers and Singh (Math Financ 20:597–615, 2010), Almgren and Li (Option hedging with smooth market impact. Preprint, 2015), Moreau et al. (Math Financ. doi: 10.1111/mafi.12098, 2015), Kallsen and Muhle-Karbe (High-resilience limits of block-shaped order books. Preprint, 2014), Guasoni and Weber (Mathematical Financ. doi: 10.1111/mafi.12099, 2015a; Nonlinear price impact and portfolio choice. Preprint, 2015b), where the frictionless hedging strategy is confined to diffusions. The consideration of general predictable reference strategies is made possible by the use of a convex analysis approach instead of the more common dynamic programming methods.  相似文献   

15.
A graph G on n vertices is said to be (km)-pancyclic if every set of k vertices in G is contained in a cycle of length r for each integer r in the set \(\{ m, m + 1, \ldots , n \}\). This property, which generalizes the notion of a vertex pancyclic graph, was defined by Faudree et al. in (Graphs Combin 20:291–310, 2004). The notion of (km)-pancyclicity provides one way to measure the prevalence of cycles in a graph. Broersma and Veldman showed in (Contemporary methods in graph theory, BI-Wiss.-Verlag, Mannheim, Wien, Zürich, pp 181–194, 1990) that any 2-connected claw-free \(P_5\)-free graph must be hamiltonian. In fact, every non-hamiltonian cycle in such a graph is either extendable or very dense. We show that any 2-connected claw-free \(P_5\)-free graph is (k, 3k)-pancyclic for each integer \(k \ge 2\). We also show that such a graph is (1, 5)-pancyclic. Examples are provided which show that these results are best possible. Each example we provide represents an infinite family of graphs.  相似文献   

16.
We prove a sharp pinching estimate for immersed mean convex solutions of mean curvature flow which unifies and improves all previously known pinching estimates, including the umbilic estimate of Huisken (J Differ Geom 20(1):237–266, 1984), the convexity estimates of Huisken–Sinestrari (Acta Math 183(1):45–70, 1999) and the cylindrical estimate of Huisken–Sinestrari (Invent Math 175(1):137–221, 2009; see also Andrews and Langford in Anal PDE 7(5):1091–1107, 2014; Huisken and Sinestrari in J Differ Geom 101(2):267–287, 2015). Namely, we show that the curvature of the solution pinches onto the convex cone generated by the curvatures of any shrinking cylinder solutions admitted by the initial data. For example, if the initial data is \((m+1)\)-convex, then the curvature of the solution pinches onto the convex hull of the curvatures of the shrinking cylinders \(\mathbb {R}^m\times S^{n-m}_{\sqrt{2(n-m)(1-t)}}\), \(t<1\). In particular, this yields a sharp estimate for the largest principal curvature, which we use to obtain a new proof of a sharp estimate for the inscribed curvature for embedded solutions (Brendle in Invent Math 202(1):217–237, 2015; Haslhofer and Kleiner in Int Math Res Not 15:6558–6561, 2015; Langford in Proc Am Math Soc 143(12):5395–5398, 2015). Making use of a recent idea of Huisken–Sinestrari (2015), we then obtain a series of sharp estimates for ancient solutions. In particular, we obtain a convexity estimate for ancient solutions which allows us to strengthen recent characterizations of the shrinking sphere due to Huisken–Sinestrari (2015) and Haslhofer–Hershkovits (Commun Anal Geom 24(3):593–604, 2016).  相似文献   

17.
The aim of this note is to prove, in the spirit of a rigidity result for isolated singularities of Schlessinger see Schlessinger (Invent Math 14:17–26, 1971) or also Kleiman and Landolfi (Compositio Math 23:407–434, 1971), a variant of a rigidity criterion for arbitrary singularities (Theorem 2.1 below). The proof of this result does not use Schlessinger’s Deformation Theory [Schlessinger (Trans Am Math Soc 130:208–222, 1968) and Schlessinger (Invent Math 14:17–26, 1971)]. Instead it makes use of Local Grothendieck-Lefschetz Theory, see (Grothendieck 1968, Éxposé 9, Proposition 1.4, page 106) and a Lemma of Zariski, see (Zariski, Am J Math 87:507–536, 1965, Lemma 4, page 526). I hope that this proof, although works only in characteristic zero, might also have some interest in its own.  相似文献   

18.
We discuss the existence of a blow-up solution for a multi-component parabolic–elliptic drift–diffusion model in higher space dimensions. We show that the local existence, uniqueness and well-posedness of a solution in the weighted \(L^2\) spaces. Moreover we prove that if the initial data satisfies certain conditions, then the corresponding solution blows up in a finite time. This is a system case for the blow up result of the chemotactic and drift–diffusion equation proved by Nagai (J Inequal Appl 6:37–55, 2001) and Nagai et al. (Hiroshima J Math 30:463–497, 2000) and gravitational interaction of particles by Biler (Colloq Math 68:229–239, 1995), Biler and Nadzieja (Colloq Math 66:319–334, 1994, Adv Differ Equ 3:177–197, 1998). We generalize the result in Kurokiba and Ogawa (Differ Integral Equ 16:427–452, 2003, Differ Integral Equ 28:441–472, 2015) and Kurokiba (Differ Integral Equ 27(5–6):425–446, 2014) for the multi-component problem and give a sufficient condition for the finite time blow up of the solution. The condition is different from the one obtained by Corrias et al. (Milan J Math 72:1–28, 2004).  相似文献   

19.
We give a new bound on the parameter \(\lambda \) (number of common neighbors of a pair of adjacent vertices) in a distance-regular graph G, improving and generalizing bounds for strongly regular graphs by Spielman (1996) and Pyber (2014. arXiv:1409.3041). The new bound is one of the ingredients of recent progress on the complexity of testing isomorphism of strongly regular graphs (Babai et al. 2013). The proof is based on a clique geometry found by Metsch (Des Codes Cryptogr 1(2):99–116, 1991) under certain constraints on the parameters. We also give a simplified proof of the following asymptotic consequence of Metsch’s result: If \(k\mu = o(\lambda ^2)\), then each edge of G belongs to a unique maximal clique of size asymptotically equal to \(\lambda \), and all other cliques have size \(o(\lambda )\). Here k denotes the degree and \(\mu \) the number of common neighbors of a pair of vertices at distance 2. We point out that Metsch’s cliques are “asymptotically Delsarte” when \(k\mu = o(\lambda ^2)\), so families of distance-regular graphs with parameters satisfying \(k\mu = o(\lambda ^2)\) are “asymptotically Delsarte-geometric.”  相似文献   

20.
In this paper we derive a series space \(\vert C_{\lambda,\mu} \vert _{k}\) using the well known absolute Cesàro summability \(\vert C_{\lambda,\mu} \vert _{k}\) of Das (Proc. Camb. Philol. Soc. 67:321–326, 1970), compute its \(\beta\)-dual, give some algebraic and topological properties, and characterize some matrix operators defined on that space. So we generalize some results of Bosanquet (J. Lond. Math. Soc. 20:39–48, 1945), Flett (Proc. Lond. Math. Soc. 7:113–141, 1957), Mehdi (Proc. Lond. Math. Soc. (3)10:180–199, 1960), Mazhar (Tohoku Math. J. 23:433–451, 1971), Orhan and Sar?göl (Rocky Mt. J. Math. 23(3):1091–1097, 1993) and Sar?göl (Commun. Math. Appl. 7(1):11–22, 2016; Math. Comput. Model. 55:1763–1769, 2012).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号