首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Considering a constrained fractional programming problem, within the present paper we present some necessary and sufficient conditions, which ensure that the optimal objective value of the considered problem is greater than or equal to a given real constant. The desired results are obtained using the Fenchel–Lagrange duality approach applied to an optimization problem with convex or difference of convex (DC) objective functions and finitely many convex constraints. These are obtained from the initial fractional programming problem using an idea due to Dinkelbach. We also show that our general results encompass as special cases some recently obtained Farkas-type results.  相似文献   

2.
For a kind of fractional programming problem that the objective functions are the ratio of two DC (difference of convex) functions with finitely many convex constraints, in this paper, its dual problems are constructed, weak and strong duality assertions are given, and some sufficient and necessary optimality conditions which characterize their optimal solutions are obtained. Some recently obtained Farkas-type results for fractional programming problems that the objective functions are the ratio of a convex function to a concave function with finitely many convex constraints are the special cases of the general results of this paper.  相似文献   

3.
In this paper, we consider a DC infinite programming problem (P) with inequality constraints. By using the properties of the epigraph of the conjugate functions, we introduce some new notions of regularity conditions for (P). Under these new regularity conditions, we completely characterize the Fenchel–Lagrange duality and the stable Fenchel–Lagrange duality for (P). Similarly, we also completely characterize the Farkas-type results and the stable Farkas-type results for (P). As applications, we obtain the corresponding results for conic programming problems.  相似文献   

4.
We present some Farkas-type results for inequality systems involving finitely many DC functions. To this end we use the so-called Fenchel-Lagrange duality approach applied to an optimization problem with DC objective function and DC inequality constraints. Some recently obtained Farkas-type results are rediscovered as special cases of our main result.  相似文献   

5.
提出了(F,α,ρ,θ)-b-凸函数的概念,它是一类新的广义凸函数,并给出了这类广义凸函数的性质.在此基础上,讨论了目标函数和约束函数均为(F,α,ρ,θ)-b-凸函数的多目标分式规划,利用广义K-T条件,得到了这类多目标规划有效解和弱有效解的几个充分条件,推广了已有文献的相关结果.  相似文献   

6.
The aim of this paper is to obtain sufficient optimality conditions for a nonlinear multiple objective fractional programming problem involving semilocally type-I univex and related functions. Furthermore, a general dual is formulated and duality results are proved under the assumptions of generalized semilocally type-I univex and related functions. Our results generalize several known results in the literature.  相似文献   

7.
In this paper, we deal with extended Ky Fan inequalities (EKFI) with DC functions. Firstly, a dual scheme for (EKFI) is introduced by using the method of Fenchel conjugate function. Under suitable conditions, weak and strong duality assertions are obtained. Then, by using the obtained duality assertions, some Farkas-type results which characterize the optimal value of (EKFI) are given. Finally, as applications, the proposed approach is applied to a convex optimization problem (COP) and a generalized variational inequality problem (GVIP).  相似文献   

8.
A new method is used for solving nonlinear multiobjective fractional programming problems having V-invex objective and constraint functions with respect to the same function η. In this approach, an equivalent vector programming problem is constructed by a modification of the objective fractional function in the original nonlinear multiobjective fractional problem. Furthermore, a modified Lagrange function is introduced for a constructed vector optimization problem. By the help of the modified Lagrange function, saddle point results are presented for the original nonlinear fractional programming problem with several ratios. Finally, a Mond-Weir type dual is associated, and weak, strong and converse duality results are established by using the introduced method with a modified function. To obtain these duality results between the original multiobjective fractional programming problem and its original Mond-Weir duals, a modified Mond-Weir vector dual problem with a modified objective function is constructed.  相似文献   

9.
We present some Farkas-type results for inequality systems involving finitely many functions. Therefore we use a conjugate duality approach applied to an optimization problem with a composed convex objective function and convex inequality constraints. Some recently obtained results are rediscovered as special cases of our main result.  相似文献   

10.
Generalizations of the well-known simplex method for linear programming are available to solve the piecewise linear programming problem and the linear fractional programming problem. In this paper we consider a further generalization of the simplex method to solve piecewise linear fractional programming problems unifying the simplex method for linear programs, piecewise linear programs, and the linear fractional programs. Computational results are presented to obtain further insights into the behavior of the algorithm on random test problems.  相似文献   

11.
In this paper, we introduce a new dual program, which is representable as a semidefinite linear programming problem, for a primal convex minimax programming problem, and we show that there is no duality gap between the primal and the dual whenever the functions involved are sum-of-squares convex polynomials. Under a suitable constraint qualification, we derive strong duality results for this class of minimax problems. Consequently, we present applications of our results to robust sum-of-squares convex programming problems under data uncertainty and to minimax fractional programming problems with sum-of-squares convex polynomials. We obtain these results by first establishing sum-of-squares polynomial representations of non-negativity of a convex max function over a system of sum-of-squares convex constraints. The new class of sum-of-squares convex polynomials is an important subclass of convex polynomials and it includes convex quadratic functions and separable convex polynomials. The sum-of-squares convexity of polynomials can numerically be checked by solving semidefinite programming problems whereas numerically verifying convexity of polynomials is generally very hard.  相似文献   

12.
In this report, we consider two kind of general fractional variational problem depending on indefinite integrals include unconstrained problem and isoperimetric problem. These problems can have multiple dependent variables, multiorder fractional derivatives, multiorder integral derivatives and boundary conditions. For both problems, we obtain the Euler-Lagrange type necessary conditions which must be satisfied for the given functional to be extremum. Also, we apply the Rayleigh-Ritz method for solving the unconstrained general fractional variational problem depending on indefinite integrals. By this method, the given problem is reduced to the problem for solving a system of algebraic equations using shifted Legendre polynomials basis functions. An approximate solution for this problem is obtained by solving the system. We discuss the analytic convergence of this method and finally by some examples will be showing the accurately and applicability for this technique.  相似文献   

13.
In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

14.
Using an augmented Lagrangian approach, we study the existence of augmented Lagrange multipliers of a semi-infinite programming problem and discuss their characterizations in terms of saddle points. In the case of a sharp Lagrangian, we obtain a first-order necessary condition for the existence of an augmented Lagrange multiplier for the semi-infinite programming problem and some first-order sufficient conditions by assuming inf-compactness of the data functions and the extended Mangasarian–Fromovitz constraint qualification. Using a valley at 0 augmenting function and assuming suitable second-order sufficient conditions, we obtain the existence of an augmented Lagrange multiplier for the semi-infinite programming problem.  相似文献   

15.
《Optimization》2012,61(2):95-125
Both parametric and nonparametric necessary and sufficient optimality conditions are established for a class of nonsmooth generalized fractional programming problems containing ρ-convex functions. Subsequently, these optimality criteria are utilized as a basis for constructing two parametric and four parameter-free duality models and proving appropriate duality theorems. Several classes of generalized fractional programming problems, including those with arbitrary norms, square roots of positive semidefinite quadratic forms, support functions, continuous max functions, and discrete max functions, which can be viewed as special cases of the main problem are briefly discussed. The optimality and duality results developed here also contain, as special cases, similar results for nonsmooth problems with fractional, discrete max, and conventional objective functions which are particular cases of the main problem considered in this paper  相似文献   

16.
We prove that a minmax fractional programming problem is equivalent to a minimax nonfractional parametric problem for a given parameter in complex space. Using a parametric approach, we establish the Kuhn-Tucker type necessary optimality conditions and prove the existence theorem of optimality for complex minimax fractional programming in the framework of generalized convexity. Subsequently, we apply the optimality conditions to formulate a one-parameter dual problem and prove weak duality, strong duality, and strict converse duality theorems involving generalized convex complex functions. This research was partly supported by NSC, Taiwan.  相似文献   

17.
In this paper, we emphasize on a nondifferentiable minimax fractional programming(NMFP) problem and obtain appropriate duality results for higher-order dual model under higher-order B-(p, r)-invex functions. We provide a nontrivial illustration of a function which belongs to the class of higher-order B-(p, r)-invex but not in the class of second-order B-(p, r)-invex functions already existing in literature. An example of finding a minimax solution of NMFP problem by using higher-order B-(p, r)-i...  相似文献   

18.
In this paper, we establish characterizations for efficient solutions to multiobjective programming problems, which generalize the characterization of established results for optimal solutions to scalar programming problems. So, we prove that in order for Kuhn–Tucker points to be efficient solutions it is necessary and sufficient that the multiobjective problem functions belong to a new class of functions, which we introduce. Similarly, we obtain characterizations for efficient solutions by using Fritz–John optimality conditions. Some examples are proposed to illustrate these classes of functions and optimality results. We study the dual problem and establish weak, strong and converse duality results.  相似文献   

19.
In this paper, we discuss a class of fractional optimal control problems, where the system dynamical constraint comprises a combination of classical and fractional derivatives. The necessary optimality conditions are derived and shown that the conditions are sufficient under certain assumptions. Additionally, we design a well-organized algorithm to obtain the numerical solution of the proposed problem by exercising Laguerre polynomials. The key motive associated with the present approach is to convert the concerned fractional optimal control problem to an equivalent standard quadratic programming problem with linear equality constraints. Given examples illustrate the computational technique of the method together with its efficiency and accuracy. Graphical representations are provided to analyze the performance of the state and control variables for distinct prescribed fractions.  相似文献   

20.
In this paper we define higher order (F,α,β,ρ,d,E)-convex function with respect to E-differentiable function K and obtain optimality conditions for nonlinear programming problem (NP) from the concept of higher order (F,α,β,ρ,d)-convexity. Here, we establish Mond-Weir and Wolfe duality for (NP) and utilize these duality in nonlinear fractional programming problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号