首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new polyanionic cathode material, Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C for lithium-ion batteries, was synthesized using a sol-gel method and with N,N-dimethyl formamide as a dispersion agent. The analysis of electron transmission spectroscopy and X-ray diffraction revealed that the composite contained two phases. The material has high crystallinity with a grain size of 20–50 nm. The valence states of Mn, V, and Fe in the composite were analyzed by X-ray photoelectron spectroscopy. The electrochemical kinetics in Li3V2(PO4)3 is effectively enhanced by the incorporation of LiMnPO4 and LiFePO4, via structure modification and reduced Li diffusion length. The Li3V2(PO4)3·LiMn0.33Fe0.67PO4/C materials displayed high rate capacity and steady cycle performance with discharge capacity remained 148 mAh g?1 after 50 cycles at the rate of 0.2C. In particular, the composite exhibited excellent reversible capacities, with the values of 157, 134, 120, 102, and 94 mAh g?1 at charge/discharge 0.2, 0.5, 1, 2, and 5C rates, respectively.  相似文献   

2.
Composite cathode material LiFePO4–Li3V2(PO4)3 is synthesized through a chemical reduction and lithiation using FeVO4·xH2O as both iron and vanadium sources. The structural properties of LiFePO4–Li3V2(PO4)3 are investigated. X-ray diffraction results show the composite material containing olivine type LiFePO4 and monoclinic Li3V2(PO4)3 phases. High-resolution transmission electron microscopy and energy-dispersive X-ray spectrometry results indicate that mutual doping effects take place between the LiFePO4 and Li3V2(PO4)3 particles with V3+ doping the LiFePO4 while Fe2+ dopes the Li3V2(PO4)3. LiFePO4–Li3V2(PO4)3 nanocomposites are formed in the carbon webs. There is no structural compatibility between monoclinic (Li3V2(PO4)3) and olivine (LiFePO4) domains in composite material LiFePO4–Li3V2(PO4)3.  相似文献   

3.
The co-precipitation method can make the materials react uniformly at molecular level and has the advantages of lower polycrystalline synthesized temperature and shorter sintering time. Therefore, it is expected that the mass production of Li1.5Al0.5Ti1.5(PO4)3 (LATP) solid electrolyte would be possible by application of the co-precipitation method for LATP preparation. In this study, an application of the co-precipitation method for a preparation of LATP solid electrolyte is attempted. Crystallized LATP powder is obtained by heating precipitant containing Li, Al, Ti, and PO4 at 800 °C for 30 min. The LATP bulk sintered pellet is successfully prepared using the crystallized LATP powder by calcinating at 1,050 °C. The cross-sectional SEM images show that many crystal grains exist, and the grains are in good contact with each other, i.e., there is no void space. All diffraction peaks of the pellet are attributed to LATP in XRD pattern. The sintered pellet is obtained by calcinating at 1,050 °C, which is more than 150 °C lower than that of conventional method. The LATP solid electrolyte shows a good conductivity which is 1.4?×?10?3 S cm?1 for bulk and 1.5?×?10?4 S cm?1 for total conductivities, respectively.  相似文献   

4.
Fuwei Mao  Dongchen Wu  Zhufa Zhou  Shumei Wang 《Ionics》2014,20(12):1665-1669
In this study, LiFe1???3x/2Bi x PO4/C cathode material was synthesized by sol–gel method. From XRD patterns, it was found that the Bi-doped LiFePO4/C cathode material had the same olivine structure with LiFePO4/C. SEM studies revealed that Bi doping can effectively decrease the particle sizes. It shortened Li+ diffusion distance between LiFePO4 phase and FePO4 phase. The LiFe0.94Bi0.04PO4/C powder exhibited a specific initial discharge capacity of about 149.6 mAh g?1 at 0.1 rate as compared to 123.5 mAh g?1 of LiFePO4/C. EIS results indicated that the charge-transfer resistance of LiFePO4/C decreased greatly after Bi doping.  相似文献   

5.
A novel electrode system composed of three-dimensionally ordered macroporous (3DOM) Li1.5Al0.5Ti1.5(PO4)3 (LATP) and LiMn2O4 was fabricated by the colloidal crystal templating method and sol–gel process. A LATP nanoparticle for the fabrication of 3DOM-LATP was prepared by a sol–gel process. A suspension containing polystyrene (PS) beads and the LATP nanoparticles was filtrated by using a polycarbonate filter to accumulate PS beads and LATP. The accumulated PS beads had a close-packing structure, and the void between PS beads was filled with LATP nanoparticles. 3DOM-LATP was obtained by heat treatment of the accumulated composite. Li–Mn–O sol was injected by a vacuum impregnation process into the macropores of 3DOM-LATP and then was heated to form three-dimensionally ordered composite materials consisting of LiMn2O4 and LATP. The formation of the composite between 3DOM-LATP and LiMn2O4 were confirmed with scanning electron microscopy and X-ray diffraction method. The prepared composite electrode system exhibited a good electrochemical performance. Paper presented at the 11th EuroConference on the Science and Technology of Ionics, Batz-sur-Mer, Sept. 9–15, 2007.  相似文献   

6.
Raman spectroscopy is an excellent technique for probing lithium intercalation reactions of many diverse lithium ion battery electrode materials. The technique is especially useful for probing LiFePO4‐based cathodes because the intramolecular vibrational modes of the PO43− anions yield intense bands in the Raman spectrum, which are sensitive to the presence of Li+ ions. However, the high power lasers typically used in Raman spectroscopy can induce phase transitions in solid‐state materials. These phase transitions may appear as changes in the spectroscopic data and could lead to erroneous conclusions concerning the delithiation mechanism of LiFePO4. Therefore, we examine the effect of exposing olivine FePO4 to a range of power settings of a 532‐nm laser. Laser power settings higher than 1.3 W/mm2 are sufficient to destroy the FePO4 crystal structure and result in the formation of disordered FePO4. After the laser is turned off, the amorphous FePO4 compound crystallizes in the electrochemically inactive α‐FePO4 phase. The present experimental results strongly suggest that the power setting of the excitation laser should be carefully controlled when using Raman spectroscopy to characterize fundamental lithium ion intercalation processes of olivine materials. In addition, Raman spectra of the amorphous intermediate might provide insight into the α‐FePO4 to olivine FePO4 phase transition that is known to occur at temperatures higher than 450 °C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Organic electrolyte is widely used for lithium-ion rechargeable batteries but might cause flammable fumes or fire due to improper use such as overcharge or short circuit. That weakness encourages the development of tools and materials which are cheap and environmental friendly for rechargeable lithium-ion batteries with aqueous electrolyte. Lithium iron phosphate (LiFePO4) with olivine structure is a potential candidate to be used as the cathode in aqueous electrolyte lithium-ion battery. However, LiFePO4 has a low electronic conductivity compared to other cathodes. Conductive coating of LiFePO4 was applied to improve the conductivity using sucrose as carbon source by heating to 600 °C for 3 h on an Argon atmosphere. The carbon-coated LiFePO4 (LiFePO4/C) was successfully prepared with three variations of the weight percentage of carbon. From the cyclic voltammetry, the addition of carbon coatings could improve the stability of cell battery in aqueous electrolyte. The result of galvanostatic charge/discharge shows that 9 % carbon exhibits the best result with the first specific discharge capacity of 13.3 mAh g?1 and capacity fading by 2.2 % after 100 cycles. Although carbon coating enhances the conductivity of LiFePO4, excessive addition of carbon could degrade the capacity of LiFePO4.  相似文献   

8.
Several olivine phosphates were investigated in the last years as cathode materials for secondary lithium ion batteries. Among these compounds, LiFe x Co1 − x PO4 solid solutions might be interesting candidates because they should combine the high potential value of Co3+/Co2+ (higher than 4.5 V vs Li+/Li) with the relatively high charge–discharge rate of LiFePO4. Solid solutions were prepared by solid-state route and characterised by X-ray powder diffraction, cyclic voltammetry, impedance spectroscopy and the Hebb–Wagner method. The results show that also low amount of iron induces high electronic conductivity in the solid solutions.  相似文献   

9.
The growth and evolution of the interphase, due to contact with the ambient atmosphere or electrolyte, are followed using 7Li magic-angle spinning nuclear magnetic resonance (MAS NMR) in the case of two materials amongst the most promising candidates for positive electrodes for lithium batteries: LiFePO4 and LiMn0.5Ni0.5O2. The use of appropriate experimental conditions to acquire the NMR signal allows observing only the «diamagnetic» lithium species at the surface of the grains of active material. The reaction of LiMn0.5Ni0.5O2 with the ambient atmosphere or LiPF6 (1 M in Ethylene Carbonated/DiMéthyl Carbonate (EC/DMC)) electrolyte is extremely fast and leads to an important amount of lithium-containing diamagnetic species compared to what can be observed in the case of LiFePO4. The two studied materials display a completely different surface chemistry in terms of reactivity and/or kinetics of the surface towards electrolyte. Moreover, these results show that MAS NMR is a very promising tool to monitor phenomena taking place at the interface between electrode and electrolyte.  相似文献   

10.
The structural characteristics of olivine-type lithium orthophosphate Li(Mg0.5Ni0.5)PO4 synthesized via solid-state reaction have been studied using X-ray diffraction, ion beam technique, scanning electron microscopy, infrared spectroscopy, transmission electron microscopy and energy dispersive X-ray analysis. The parent LiNiPO4 compound can be synthesized in olivine structure without any evidence of secondary phases as impurities. The structural quality of the parent LiNiPO4 in the absence of secondary component phases resulted in the formation of hexagonal closed packed structure. The olivine analogue compound containing mixed M (M?=?Mg, Ni) cations, Li(Mg0.5Ni0.5)PO4 contained Li3PO4 as a second phase upon synthesis, however a carbothermal reduction method produced a single-phase compound. The redox behaviour of carbon-coated Li(Mg0.5Ni0.5)PO4 cathode in aqueous lithium hydroxide as the electrolyte showed reversible lithium intercalation.  相似文献   

11.
A series of mechanical mixture of lithium–iron–vanadium–phosphate compositions that can be represented in two-component notation, xLiFePO4·y Li3V2(PO4)3 (LFVP), has been evaluated as electrodes in lithium cells for x:y = 0:1, 1:1, 5:1, 10:1, and 1:0, in which an olivine component, LiFePO4 (LFP), and a monoclinic component, Li3V2(PO4)3 (LVP), coexisted. Powder X-ray diffraction (XRD) patterns show that the end members and the electrochemical profiles of cells with these electrodes are consistent with those expected for the olivine LiFePO4(x = 1, y = 0) and for monoclinic Li3V2(PO4)3 (x = 0, y = 1). XRD data and the changes of cell parameters indicate that there existed some V- and Fe-doping in the composite xLiFePO4·y Li3V2(PO4)3, resulting with a good performance compared with single LiFePO4 and Li3V2(PO4)3. Electrochemical characteristics were evaluated by using cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the electron transfer activity and the lithium ion diffusion rate in LFVP are better than single LFP and LVP.  相似文献   

12.
Yan-Rong Zhu  Ting-Feng Yi 《Ionics》2016,22(10):1759-1774
High-voltage spinel LiNi0.5Mn1.5O4 has been considered one of the most promising cathode materials for lithium-ion power batteries used in electrical vehicles (EVs) or hybrid electrical vehicles (HEVs) because the high voltage plateau at around 4.7 V makes its energy density (658 Wh kg?1) 30 and 25 % higher than that of conventional pristine spinel LiMn2O4 (440 Wh kg?1) or olivine LiFePO4 (500 Wh kg?1) materials, respectively. Unfortunately, LiNi0.5Mn1.5O4-based batteries with LiPF6-based carbonate electrolytes always suffer from severe capacity deterioration and poor thermostability because of the oxidization of organic carbonate solvents and decomposition of LiPF6, especially at elevated temperatures and water-containing environment. The major goal of this review is to highlight the recent advancements in the development of advanced electrolytes for improving the cycling stability and rate capacity of LiNi0.5Mn1.5O4-based batteries. Finally, an insight into the future research and further development of advanced electrolytes for LiNi0.5Mn1.5O4-based batteries is discussed.  相似文献   

13.
Mg-doping effects on the electrochemical property of LiFePO4–Li3V2(PO4)3 composite materials, a mutual-doping system, are investigated. X-ray diffraction study indicates that Mg doping decreases the cell volume of LiFePO4 in the composite. The cyclic voltammograms reveal that the reversibility of the electrode reaction and the diffusion of lithium ion is enhanced by Mg doping. Mg doping also improves the conductivity and rate capacity of 7LiFePO4–Li3V2(PO4)3 composite material and decreases the polarization of the electrode reaction. The discharge capacity of the Mg-doped composite was 93 mAh?g?1 at the current density of 1,500 mA?g?1, and Mg-doped composite has better discharge performance than the original 7LiFePO4–Li3V2(PO4)3 composite at low temperature, too. At ?30 °C, the discharge capacity of Mg-doped LFVP is 89 mAh?g?1, higher than that of the original composite. Electrochemical impedance spectroscopy study shows that Mg2+ doping could enhance the electrochemical activity of 7LiFePO4–Li3V2(PO4)3 composite. Mg doping has a positive influence on the electrochemical performance of the LiFePO4–Li3V2(PO4)3 composite material.  相似文献   

14.
Composites of three-dimensional (3D) carbon nanostructures coated with olivine-structured lithium iron phosphates (LiFePO4) as cathode materials for lithium ion batteries have been prepared through a Pechini-assisted reversed polyol process for the first time. The coating has been successfully performed on nonfunctionalized commercially available 3D carbon used as catalysts. Thermal analysis revealed no phase transitions till crystallization occurred at 579 °C. Morphological investigation of the prepared composites showed a very good quality of the coating on the 3D carbon structures. A great enhancement of the crystallinity of the olivine structure and of the composites was revealed by the structural investigation performed on pure LiFePO4 and composites after annealing at 600 °C for 10 h under nitrogen atmosphere. The cyclic voltammetry curves of the composites show well-defined peaks and smaller value of the polarization overpotential indicating an enhancement of electrode reaction reversibility compared to the LiFePO4 phase.  相似文献   

15.
To improve the performance of LiFePO4, LiFe1?x Mo x PO4/C (x?=?0, 0.005, 0.010, 0.015, 0.020, 0.025) cathode materials were synthesized via two-step ball milling solid-state reaction. The prepared samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectra, and galvanostatic charge–discharge test. It is apparent from XRD analysis that Mo doping enlarges the interplanar distance of crystal plane parallel to [010] direction in LiFePO4. In other words, it widens one-dimensional diffusion channels of Li+ along the [010] direction. The results of electrochemical test indicate that the LiFe0.99Mo0.01PO4/C composite exhibits a discharge capacity of 144.8 mAh g?1 at 1 C rate, a decreased charge transfer resistance of 162.4 Ω and better reversibility of electrode reactions. The present synthesis route is promising and practical for the preparation of LiFePO4 materials.  相似文献   

16.
Recently, lithium bi-metal phosphates (LiM′M″PO4) have been synthesized for use as cathode materials in order to increase cell voltages and electrical performances. In this work, we have substituted Mn2+ at the 4c site of LiFePO4 to prepare the lithium bi-metal phosphate LiMn0.25Fe0.75PO4 and have found that it greatly enhances the cell voltage. At a 0.05 C discharge rate, the cell capacity was about 153 mAhg− 1 and the average working voltage rose to 3.53 V due to the Mn substitution. However, the capacity and working voltage both decrease as the discharge rate increases. By in-situ metal K-edge absorption analysis, it reveals that the substituted metal Mn2+ does not work completely at a higher discharge rate, due to poor electrical conductivity and a serious Jahn–Teller effect.  相似文献   

17.
By introducing nickel chemical into the precursor sol of LiFePO4, a series of Ni-doped LiFePO4 composite cathode materials, denoted as LiFe1???x Ni x PO4/C (x?=?0, 0.01, 0.03, 0.05 and 0.10) were prepared by a spray drying–carbothermal approach. The materials were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical impedance spectrum etc. It is found that the doping of nickel with appropriate amount caused a slight shift of diffraction peaks towards higher angles and enhanced the dispersion of nanoprimary particles, which could be observed from their XRD patterns and SEM images. For the sample with 3 mol% Ni doing, the charge transfer resistance reduced from 52.4?Ω of LiFePO4 to 18.7?Ω of LiFe0.97Ni0.3PO4/C, and the potential interval of the redox peaks reduced from 0.51 to 0.40 V, indicating the better reversible of Ni-doped materials. For the sample LiFe0.97Ni0.03PO4/C, its initial discharge capacities at various rates are 169.2 (0.2 C), 156.2 (1.0 C), 147.9 (2.0 C), 135.5 (5.0 C), and 94.0 (10.0 C)?mAh g?1, respectively, enhanced by 55.2 % (at 5.0 C) and 82.1 % (at 10.0 C) compared with LiFePO4. Furthermore, after 200 cycles of charge/discharge at 0.5 C, the capacity of LiFe0.97Ni0.03PO4/C only decreased 8.8 %, but over 25 % decrease was observed for LiFePO4/C.  相似文献   

18.
An experimental study of the thermolysis mechanism of FeC2O4, NH4H2PO4, Li2CO3, and citric acid from the viewpoint of the usage of a mixture of these compounds in lithium power engineering for the solid-state synthesis of LiFePO4 and its composite with carbon LiFePO4/C as well as comparison of experimental data with thermodynamic calculations were made in the temperature range from 25 up to 1,000 °C. The oxides Fe3O4, Fe2O3, and FeO were detected as the intermediate products of thermolysis of ferrous oxalate in these conditions. Various paths of oxalate decomposition may well proceed concurrently with the predomination of this or that path under slight changes in the experimental conditions. The formation of orthorhombic lithium phosphate Li3PO4 is detected just in a blend grinded at room temperature, and Li3PO4 and NH4PO3 are the basis of triphylite synthesis at increased temperatures (up to 800 °C). A new phase of single-substituted anhydrous lithium citrate C6H7O7Li is formed at room temperature if citric acid C6H8O7?H2O is used as an organic precursor. The thermal treatment, at which citric acid can form a carbon coating with a maximum conductivity, was estimated experimentally. To identify the products of chemical reactions, structural characterization, and comparative analysis of samples synthesized at several temperatures, a set of techniques was used, namely TG with gas release analysis, Mossbauer spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, surface microanalysis, laser diffraction analyses. Galvanostatic cycling was used to study the electrochemical properties of the LiFePO4/C electrode material.  相似文献   

19.
Flake-like LiFePO4 were hydrothermally synthesized in an organic-free solution at heating rates of 0.5, 1.5, 3, and 5 °C min?1. The heating rate has a marked influence on crystal morphology but scarcely on phase purity. The reason for morphology variations is discussed based upon the solubility of precursors Li3PO4 and Fe3(PO4)2·8H2O. The optimum heating rate for hydrothermal synthesis of LiFePO4 is 3 °C min?1. The as-synthesized material exhibits a high specific capacity, excellent rate capability, good low-temperature performance and Li+ diffusivity after carbon coating, all of which could be ascribed to shortened Li+ diffusion distance and higher crystallization degree of the crystalline.  相似文献   

20.
Li2CO3 was used as the secondary lithium source for the synthesis of LiFePO4/C composites via a solid-state reaction method by adopting Li3PO4 as the main lithium source. The main purpose of using Li2CO3 is to compensate for the partial lithium loss during the sintering while reducing the usage of excess Li3PO4. In this study, the effects of Li2CO3 amount on the phase, structural and electrochemical properties of LiFePO4/C material were systematically investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), constant-current charge–discharge test and cyclic voltammetry (CV). The results showed that by adding an appropriate amount of Li2CO3, the impurities, e.g. Li3PO4, normally appearing in the final product, could be excluded. It was found that LiFePO4/C with Li2CO3 in 6% excess (vs. stoichiometric LiFePO4) exhibited the best electrochemical performance, which delivered initial discharge capacities of 141.7, 125.2, 119.9 and 108.9 mAh g?1, respectively, at 0.5, 1, 2 and 5C rates. The capacity was reduced to 113.4 mAh g?1 after 50 cycles at 2C rate, with capacity retention rate of 94.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号