首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The phase diagram of the ternary system,i.e. poly(diallyldimethylammonium chloride), poly(acrylic acid, sodium salt), and water was investigated by varying the molecular weight of the components. In general, a range of phase separation is surrounded by a one-phase system. The range of phase separation can be subdivided into a region of flocculation and/or coacervation in contrast to stable symplex dispersions. By increasing the molecular weight of the components the range of phase separation is increased and phenomena of flocculation followed by coacervation were observed predominantly. Above a molecular weight of 10 000 g/mol the transition to concentrated macroscopic homogeneous one-phase systems was observed at a constant ionic strength of 2 mol/l coinciding with the ?critical ionic strength? for Coulombic interactions in this system. That means the transition to concentrated one-phase systems can be understood by the disappearance of Coulombic forces above a system-specific ionic strength resulting in a quite additive behaviour of the mixtures with regard to the components. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

2.
The peculiarities of the fluctuation motions of diallyldimethylammonium chloride polyions (PDADMAC) in 0.01M, 0.025M, and 0.05M NaCl aqueous solutions were studied depending on the polyion concentration by means of dynamic and static light scattering. The behavior of the system in a transitional region between dilute and unentangled semidilute solutions was investigated. The nature of the fastest and slowest motion modes is discussed; additional modes observed upon scattering in semidilute solutions were attributed to interaction modes.  相似文献   

3.
Voltammetric dealloying is employed here to investigate the correlations between catalytic performance and surface composition and structure, taking ethanol oxidation reaction (EOR) on Pd-Cu alloy surface as a case study. First, home-made PdCu/C with a mean particle size of ca. 3.11?±?0.6 nm is dealloyed by repetitive potential cycling in 0.5 M H2SO4. With dealloying cycles rising, the Cu component is gradually leached out and the corresponding Pd/Cu atomic ratio gradually increases from ca. 2.1 to 4.0; meanwhile, SEM images display that Pd-rich porous shell is formed due to dealloying-induced surface structural rearrangement, being verified by the appearance of ear-like peaks at ??0.015 V (vs. SCE) in CVs collected in 0.5 M H2SO4; furthermore, XPS spectra indicate that core-level binding energies of Pd 3d5/2 first positively shift to 336.1 eV and then oppositively move down to 334.9 eV, indicating that the d-band center of Pd composition is modulated by the dealloying treatment. Moreover, the voltammetric peak current densities for EOR follow the order of PdCu/C-DA15?>?as-prepared PdCu/C ??>?PdCu/C-DA30 ? commercial Pd/C ? PdCu/C-DA75, due to the modest downshift of Pd d-band center resulted by charge transfer and surface atomic rearrangement. In addition, the EOR durability gradually decays with the continuous loss of Cu, indicating that electro-oxidation of surface species also follows the so-called bi-functional mechanism. This work might provide some new insights into the catalysis enhancement by tuning the surface/interfacial structure of catalysts.
Graphical abstract The voltammetric peak current densities for ethanol oxidation on home-made PdCu/C catalysts gradually decrease with the dealloying cycles rising, suggesting that the surface voltammetric dealloyment could effectively modulate the surface composition and structure, so as to tune the catalytic performance.
  相似文献   

4.
Palladium nanoparticles supported on carbon Vulcan XC72 (Pd/C) and on phosphorus-doped carbon (Pd/P-C) were prepared by an alcohol reduction process. X-ray diffractograms of Pd/C and Pd/P-C showed the typical face-centered cubic (fcc) structure of Pd. The crystallite sizes of Pd fcc phase were around 8 nm for both samples. X-ray photoelectron spectroscopy revealed to Pd/C and Pd/P-C that Pd was found predominantly in the metallic state and to Pd/P-C, the presence of P increases the amount of oxygen on the electrocatalyst surface. The activity and stability of the electrocatalyts for ethanol electro-oxidation in alkaline medium was investigated by cyclic voltammetry and chronoamperometry experiments. The peak current density on Pd/P-C was 50% higher than on Pd/C, while the current density measured after 30 min at ? 0.35 V vs. Hg/HgO was 65% higher on Pd/P-C than on Pd/C. The enhancement of the catalytic activity of Pd/P-C electrocatalyst might be related to the presence of higher amounts of oxygen species on the surface, which could contribute to the oxidation of intermediates formed during ethanol electro-oxidation process.  相似文献   

5.
Platinum nanoparticles supported on physical mixtures of Vulcan carbon and TiO2 (Pt/(C?+?TiO2)) were prepared by the borohydride method and tested for methanol electro-oxidation in alkaline media. X-ray diffraction (XRD) analyses showed peaks characteristic of Pt face-centered cubic (fcc) structure and peaks associated with TiO2 and carbon. Transmission electron microscopy (TEM) images showed the Pt nanoparticles distributed preferentially over the TiO2 support with average particle sizes between 5 and 6 nm. Cyclic voltammograms showed a decrease of Pt surface area with increasing TiO2 load while linear sweep in the presence of methanol showed Pt/(C?+?TiO2) (60:40) with the highest current density in accordance with chronoamperometry. The results were attributed to Pt-based nanoparticles on TiO2 which show enhanced catalytic activities for methanol oxidation due to a metal-support interaction. Furthermore, TiO2 is a semiconductor with low conductivity when compared to carbon. Thus, it is expected that an intermediate proportion of carbon and TiO2 as substrate could improve the activity of Pt nanoparticles without substantial loss of conductivity, resulting in a synergic effect.  相似文献   

6.
Oxygen chemisorbs on clean Co(0001) at 300 K with an initial sticking probability of ~0.3. The chemisorbed overlayer (which is very reactive towards CO) readily undergoes conversion to cobalt oxide, even at room temperature. This transformation is accelerated at higher temperatures, and the oxygen uptake rate falls as CoO growth proceeds. At a certain point, however, the uptake rate rises sharply, and this behaviour is ascribed to nucleation and growth ofCo3O4. This interpretation is consistent with the available Δφ, Auger, LEED, and reactivity data. Thus Δφ changes sign as lattice penetration by the ad sorbed oxygen takes place, and this is accompanied by a shift and broadening of the O(KLL) Auger signal. LEED indicates the epitaxial growth firstly of CoO(111) and then, at higher oxygen exposures, of Co3O4(111). At 300 K CO rapidly reduces the Co3O4 surface back to CoO, and the oxidation/reduction behaviour by O2/CO appears to be completely reversible. Steady-state measurements yield a value of 19 ± 7 kJ mol?1 for the activation energy to CO2 production from CO + O2. Earlier photoelectron spectroscopic studies by other authors are considered in the light of these results.  相似文献   

7.
The inhibitor performance of chemically synthesized water soluble poly(aminoquinone) (PAQ) on iron corrosion in 0.5 M sulphuric acid was studied in relation to inhibitor concentration using potentiodynamic polarization and electrochemical impedance spectroscopy measurements. On comparing the inhibition performance of PAQ with that of the monomer o-phenylenediamine (OPD), the OPD gave an efficiency of 80% for 1000 ppm while it was 90% for 100 ppm of PAQ. PAQ was found to be a mixed inhibitor. Besides, PAQ was able to improve the passivation tendency of iron in 0.5 M H2SO4 markedly.  相似文献   

8.
Metal nanoparticles (NPs) are a subject of global interest in research community due to their diverse applications in various fields of science. The stabilization of these metal NPs is of great concern in order to avoid their agglomerization during their applications. There is a huge pool of cations and anions available for the selection of ionic liquids (ILs) as stabilizers for the synthesis of metal NPs. ILs are known for their tunable nature allowing the fine tuning of NPs size and solubility by varying the substitutions on the heteroatom as well as the counter anions. However, there has been a debate over the stability of metal NPs stabilized by ILs over a long period of time and also upon their recycling and reuse in organocatalytic reactions. ILs covalently attached to solid supports (SILLPs) have given a new dimension for the stabilization of metal NPs as well as their separation, recovery, and reuse in organocatalytic reactions. Poly(ILs) (PILs) or polyelectrolytes have created a significant revolution in the polymer science owing to their characteristic properties of polymers as well as ILs. This dual behavior of PILs has facilitated the stabilization of PIL-stabilized metal NPs over a long period of time with negligible or no change in particle size, stability, and size distribution upon recycling in catalysis. This review provides an insight into the different types of imidazolium-based ILs, supported ILs, and PILs used so far for the stabilization of metal NPs and their applications as a function of their cations and counter anions.  相似文献   

9.
The kinetics of oxidation of antibiotic drug, ampicillin (AMP) by diperiodatoargentate (III) (DPA) in alkaline medium at a constant ionic strength of 0.25‐mol dm?3 was studied spectrophotometrically. The reaction between DPA and AMP in alkaline medium exhibits 1:2 stoichiometry (AMP:DPA). The reaction is of first order in [DPA] and has less than unit order in both [AMP] and [alkali]. Added periodate retarded the rate of reaction and intervention of free radicals was observed in the reaction. The oxidation reaction in alkaline medium has been shown to proceed via a DPA–AMP complex, which decomposes slowly in a rate‐determining step followed by other fast steps to give the products. The main products were identified by spot test, IR and NMR studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Increasing interest in oxide supported nanoparticle science and technology is stimulating research into controlling nanocrystal shape. Pd forms nanocrystals on the surface of SrTiO3(001), and depending on the crystallographic interface of the Pd with the substrate three shapes can be created: truncated pyramids, huts, and hexagonal shaped disks. Scanning tunneling microscopy reveals that the nanocrystal shapes are determined by the substrate reconstruction and the substrate temperature during deposition. A thermodynamic model is used to show that the pyramids and huts are stable structures, and that the hexagons are trapped in a metastable state.  相似文献   

11.
Formation of linear polyenes–(CH=CH)n–via acid-catalyzed thermal dehydration of polyvinyl alcohol in 9- to 40-µm-thick films of this polymer containing hydrochloric acid, aluminum chloride, and phosphotungstic acid as dehydration catalysts was studied by electronic absorption spectroscopy. The concentration of long-chain (n ≥ 8) polyenes in films containing phosphotungstic acid is found to monotonically increase with the duration of thermal treatment of films, although the kinetics of this process is independent of film thickness. In films containing hydrochloric acid and aluminum chloride, the formation rate of polyenes with n ≥ 8 rapidly drops as film thickness decreases and the annealing time increases. As a result, at a film thickness of less than 10–12 µm, long-chain polyenes are not formed at all in these films no matter how long thermal duration is. The reason for this behavior is that hydrochloric acid catalyzing polymer dehydration in these films evaporates from the films during thermal treatment, the evaporation rate inversely depending on film thickness.  相似文献   

12.
《Composite Interfaces》2013,20(5):351-363
Composite films of different molecular weight poly(phenylene sulfide) (PPS) and three types of carbon fibers (Pitch, PAN, and Rayon-based fibers) have been studied by optical microscopy and wide-angle X-ray diffraction. Transcrystallization of growing spherulites on carbon fibers is found under all thermal conditions of growth on Rayon and Pitch-based carbon fibers for all types of matrices. For composite films with PAN carbon fibers transcrystallization of growing spherulites is not uniform and sometimes is not found at all. Existence of b axial orientation of twisted lamellae for transcrystalline zone of PPS is demonstrated by X-ray diffraction technique and compared with orientation of the stretched sample. The new induction time quantitative approach is applied to the transcrystalline growth of PPS spherulites on the surface of carbon fibers. The interfacial free energy difference for fiber/crystallite and heterogeneities/ crystallite systems in the melt that is defined from growth and nucleation studies are calculated and compared. The relative tendency for a polymer to crystallize at the fiber surface rather than in the bulk is demonstrated.  相似文献   

13.
Journal of Nanoparticle Research - The ground-state magnetic properties of ConPtm binary alloy clusters of size N = n + m ≤?9 are studied systematically as a function of size,...  相似文献   

14.
In this study, poly(P-phenylenediamine/ZnO) (PpPD/ZnO) nanocomposite (NC) under ultrasonic conditions was synthesized and characterized. The presence of zinc oxide nanoparticles changed the morphology of PpPD considerably as confirmed by SEM observations. Hydrazine electrooxidation at novel modified carbon paste electrodes (CPE) with supported NC was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) techniques. Obtained results showed that the NC increases the surface catalytic activity of CPE toward hydrazine electrooxidation. The electrocatalytic current density increased linearly with hydrazine concentration, and the detection limit and sensitivity are determined to be 24 μM and 0.172 mA cm?2 mM?1, respectively. As revealed by the EIS measurements, the increased conductivity and decreased R ct are owing to the presence of ZnO NPs in the PpPD matrix. The CA results indicated that hydrazine electrooxidation results in higher steady-state current density on CPE/PpDP/ZnO electrode system compared to the CPE/PpDP and CPE electrodes.  相似文献   

15.
In this project, physicochemical properties of poly(vinyl chloride) (PVC) reinforced by ZnO nanoparticles (NPs) were studied. Firstly, ZnO NPs were modified with bovine serum albumin (BSA) as an organo-modifier and biocompatible substance through ultrasound irradiation as environmental friendly, low cost and rapid means. Nanocomposite (NC) films were prepared by loadings of various ratios of ZnO/BSA NPs (3, 6 and 9 wt%) inside the PVC. Structural morphology and physical properties of the ZnO-BSA NPs and NC films were investigated via Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), transmission electron microscopy and field emission scanning electron microscopy. According to the obtained information from the TGA, an increase in the thermal stability can be clearly observed. Also the results of contact angle analysis indicated with increasing percent of ZnO/BSA NPs into PVC the hydrophilic behaviors of NCs were increased.  相似文献   

16.
17.
The effect of transcrystallinity in carbon fiber reinforced poly(p-phenylene sulfide (PPS) composites on the apparent shear strength was investigated with the single fiber pull-out test. Transcrystalline zones around the reinforcing fibers do not seem to improve the adhesion level significantly. Neighbor fibers hinder the formation of the transcrystalline zone and a ductile fracture behavior can be observed. However, the apparent strength level is slightly higher for composites containing such reinforcing neighbor fibers compared with single fiber composite samples. During annealing a brittle interface can be formed in the multifiber composite yielding a higher level of the apparent shear strength.  相似文献   

18.
In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) “plastic films” and (2) magnetic plastic films “magneto-polymeric nanocomposites” were prepared. Precursor solutions or “plastisols” used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress–strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe3O4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.  相似文献   

19.
Three analgesics, acetaminophen, acetylsalicylic acid, and dipyrone were determined by stripping voltammetry using nanosized poly(3,4-ethylenedioxythiophene)-modified glassy carbon electrode . The cyclic voltammetric behavior of the three analgesics was studied in aqueous acid, neutral, and alkaline conditions. One well-defined oxidation peak each for acetaminophen and acetylsalicylic acid and three oxidation peaks for dipyrone were observed in the cyclic voltammograms. The influence of pH, scan rate, and concentration revealed irreversible diffusion controlled reaction. A systematic study of the experimental parameters that affect the differential pulse stripping voltammetric response was carried out. Calibration was made under maximum peak current conditions. The scanning electron microscope analysis confirmed good accumulation of the drugs on the electrode surface. The range of study for both acetaminophen, acetylsalicylic acid were 0.015–0.4 and dipyrone was 0.025–0.4 μg/ml. The lower limit of determination for both acetaminophen, acetylsalicylic acid was 0.01 μg/mL and for dipyrone was 0.02 μg/mL. The suitability of the method for the determination of the three analgesics in pharmaceutical preparations and urine samples was also ascertained.  相似文献   

20.
Physicochemical properties such as density (ρ), viscosity (η), ultrasonic speed (u) of ionic liquid tetrabutylphosphonium tetrafluoroborate in acetonitrile, tetrahydrofuran, 1,3-dioxolane, and their binaries have been studied over the entire range of composition at 298.15°K. Apparent molar volumes (? V ) and viscosity B-coefficients supplemented with the data of densities and viscosities, respectively, have been interpreted in terms of ion–solvent interactions. The limiting apparent molar volumes (? V 0 ), experimental slopes (S V ? ) derived from the Masson equation, and viscosity A and B-coefficients analyzed by the Jones–Dole equation have also been interpreted. The adiabatic compressibility (β) has been evaluated using the ultrasonic speed (u) values. Thereafter, limiting apparent molar adiabatic compressibilities (? K 0  ) have been evaluated and discussed for the same.
Figure
Novelty and main finding: The derived communications of an ionic liquid widespreading in significant solvents enable the researchers to focus on replacing VOSs by proper solvents for simple transformations with minimum chemical waste and environmental pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号