首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hexagonal and cubic Li0.5TiO2 particles have been fabricated through magnesiothermic reduction of Li2TiO3 particles in a temperature range of 600 to 640 °C. The prolonged reduction time results in lattice transition from hexagonal to cubic structure of Li0.5TiO2. Their microstructures, valance state, chemical composition, as well as electrochemical performance as anode candidates for lithium ion batteries have been characterized and evaluated. The hexagonal Li0.5TiO2 exhibits better electrochemical activity compared with the cubic one. Further, the carbon-coated hexagonal Li0.5TiO2 displays improved electrochemical performance with initial reversible capacity of 176.6 mAh g?1 and excellent cyclic behavior except capacity fading in the initial 10 cycles, which demonstrate a novel anode candidate for long lifetime lithium ion batteries.  相似文献   

2.
Lithium-ion batteries with both high power and high energy density are one of the promising power sources for electric devices, especially for electric vehicles (EV) and other portable electric devices. One of the challenges is to improve the safety and electrochemical performance of lithium ion batteries anode materials. Li4Ti5O12 has been accepted as a novel anode material of power lithium ion battery instead of carbon because it can release lithium ions repeatedly for recharging and quickly for high current. However, Li4Ti5O12 has an insulating character due to the electronic structure characterized by empty Ti 3d-states, and this might result in the insufficient applications of LTO at high current discharge rate before any materials modifications. This review focuses first on the present status of Li4Ti5O12 including the synthesized method, doping, surface modification, application and theoretical calculation, then on its near future development.  相似文献   

3.
The reaction of N2 with lithium at electrode in lithium ion batteries was reported in this paper. At room temperature, N2 can react with lithium, mainly at anode, to form Li3N in an electrochemical system very easily during charge–discharge cycles. Li3N has been characterized by XPS. Experimental results also revealed that the higher of the current density and higher of the temperature resulted in quicker of the nitrogen-fixation reaction. Moreover, the reaction of nitrogen with Li was faster at the TiO2-coated cathode than at the uncoated cathode. The reaction can be brought about almost completely in the lithium ion batteries at room temperature. This could be a new method for preparation of Li3N at room temperature.  相似文献   

4.
C. P. Sandhya  Bibin John  C. Gouri 《Ionics》2014,20(5):601-620
Lithium titanate (Li4Ti5O12) has emerged as a promising anode material for lithium-ion (Li-ion) batteries. The use of lithium titanate can improve the rate capability, cyclability, and safety features of Li-ion cells. This literature review deals with the features of Li4Ti5O12, different methods for the synthesis of Li4Ti5O12, theoretical studies on Li4Ti5O12, recent advances in this area, and application in Li-ion batteries. A few commercial Li-ion cells which use lithium titanate anode are also highlighted.  相似文献   

5.
Qian Huang  Zhen Yang  Jian Mao 《Ionics》2017,23(4):803-811
Li4Ti5O12 is regarded as the ideal anode material for its stable structure, high charge/discharge platform, and safety performance. But low ionic and electronic conductivity of the Li4Ti5O12 anode material under the condition of low temperature greatly limit its application in practical production. In this paper, some modified methods for improving the low-temperature electrochemical performance of Li4Ti5O12 anode material were summarized. Meanwhile, we explored its influence mechanisms at low temperature, one is, with the subtle changes of lattice parameters and oxygen atom fraction coordinates of Li4Ti5O12 at low temperature, the changes of the bond length influence the structural stability of Li4Ti5O12 and the diffusion path of lithium ions; the other reason is that the charge transfer resistance increases obviously and the lithium ion diffusion coefficient reduces under low temperature. Finally, the research directions for improving the low-temperature electrochemical performance were proposed.  相似文献   

6.
《Solid State Ionics》2006,177(15-16):1331-1334
Hard carbon/Li2.6Co0.4N composite anode electrode is prepared to reduce the initial high irreversible capacity of hard carbon, which hinders potential application of hard carbon in lithium ion batteries, by introducing Li2.6Co0.4N into hard carbon. Lithiated Li2.6Co0.4N provides the compensation of lithium in the first cycle, leading to a high initial coulombic efficiency of ca. 100% versus lithium. As-prepared hard carbon/Li2.6Co0.4N composite electrode presents initial capacity of 438 mA h g 1. A full cell using LiCoO2 cathode and the composite anode shows much higher initial coulombic efficiency and capacity than those of a cell using LiCoO2 and hard carbon anode. This paves the way to reduce the large initial irreversible capacity of hard carbon.  相似文献   

7.
The influence of post-calcination treatment on spinel Li4Ti5O12 anode material is extensively studied combining with a ball-milling-assisted rheological phase reaction method. The post-calcinated Li4Ti5O12 shows a well distribution with expanded gaps between particles, which are beneficial for lithium ion mobility. Electrochemical results exhibit that the post-calcinated Li4Ti5O12 delivers an improved specific capacity and rate capability. A high discharge capacity of 172.9 mAh g?1 and a reversible charge capacity of 171.1 mAh g?1 can be achieved at 1 C rate, which are very close to its theoretical capacity (175 mAh g?1). Even at the rate of 20 C, the post-calcinated Li4Ti5O12 still delivers a quite high charge capacity of 124.5 mAh g?1 after 50 cycles, which is much improved over that (43.9 mAh g?1) of the pure Li4Ti5O12 without post-calcination treatment. This excellent electrochemical performance should be ascribed to the post-calcination process, which can greatly improve the lithium ion diffusion coefficient and further enhance the electrochemical kinetics significantly.  相似文献   

8.
In this paper, submicron Li2MoO4 material was synthesized via rheological phase method. The structure, composition and morphology of the obtained powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectrometer (XPS) and scanning electron microscope (SEM), respectively. The key calcination temperature was 700 oC. The particle sizes were about from 100 to 300 nm. As anode material of lithium ion batteries, lithium storage performances of the as-prepared Li2MoO4 were evaluated at different current densities. The best capacity retention was 75.7% of the initial capacity (592.13 mAh g-1) after 50 cycles at 0.2 mA cm-2 in 0.1-2.5 V, and the resistance was about 123.5 Ω, indicating a potential prospect in the application of lithium ions batteries.  相似文献   

9.
The first-principles density functional theory has been employed to study the structural and electronic properties of LixCoSiO4. The lattice stability of LixCoSiO4 during the lithiation–delithiation process is discussed. The changes in the electronic structures of LixCoSiO4 during the deintercalation of Li ions are also probed. It is found that Li2CoSiO4 reacts reversibly with 1 Li+ at an average voltage of 4.1 V versus a lithium anode. The computational results indicate that Li2CoSiO4 material is a potential candidate for high-capacity cathode for advanced lithium ion batteries.  相似文献   

10.
Carbon encapsulated Li4Ti5O12 (C/Li4Ti5O12) anode material for lithium ion battery was prepared by using the pre-coat method of two steps, and the TiO2 was pre coated before the reaction with Li2CO3. The structure and morphology of the resultant C/Li4Ti5O12 materials were characterized by X-ray diffraction (XRD) and scanning microscopy (SEM). Electrochemical tests showed that at 0.1 C, the initial discharge capacity was 169.9 mAh g?1, and the discharge capacity was 80 mAh g?1 at 5 C. After 100 cycles at 2 C, the discharge specific capacity was 108.5 mAh g?1. Compare with one step coating method, results showed the C/Li4Ti5O12 prepared by pre-coat method can reduce the particle’s size and effectively improve the electrochemical performance.  相似文献   

11.
This paper studies the structure and electronic properties of Li4Ti5O12, as anode material for lithium ion batteries, from first principles calculations. The results suggest that there are two kinds of unit cell of Li4Ti5O12: n-type and p-type. The two unit cells have different structures and electronic properties:the n-type with two 16d site Li ions is metallic by electron, while the p-type with three 16d Li ions is metallic by hole. However, the Li4Ti5O12 is an insulator. It is very interesting that one n-type cell and two p-type cells constitute one Li4Ti5O12 supercell which is insulating. The results show that the intercalation potential obtained with a p-type unit cell with one additional electron is quite close to the experimental value of 1.5 V.  相似文献   

12.
The Li4Ti5O12 is applied in lithium ion batteries as anode material, which can be synthesized by various synthesis techniques. In this study, the molten salt synthesis technique at low temperatures, i.e. 350 °C, was applied to synthesize Li4Ti5O12. Surprisingly, the Li4Ti5O12 was not formed according to XRD analysis, which raised question about the stability range of Li4Ti5O12. To investigate the stability of Li4Ti5O12 at low temperatures, the high-temperature calcined Li4Ti5O12 powder was equilibrated in the LiCl-KCl eutectic salt at 350 °C. The result of experiment revealed that the Li4Ti5O12 is not decomposed. Results of ab initio calculations also indicated that the Li4Ti5O12 phase is a stable phase at 0 K. The products of molten salt synthesis technique were then annealed at 900 °C, which resulted in the Li4Ti5O12 formation. It was concluded that the Li4Ti5O12 is a stable phase at low temperatures and the reasons for not forming the Li4Ti5O12 by molten salt technique at low temperature are possibly related to activation energy and kinetic barriers. The Li4Ti5O12 formation energy is also very small, due to the results of ab initio calculations.  相似文献   

13.
This work presents a feasible route for the facile synthesis of three-dimensional (3D) hierarchical mesocarbon microbead (MCMB) as anodes for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). The MCMB is oxidized by modified hummers method, and then the precursor is treated by hydrogen reduction to form the HMCMB. The HMCMB with graphene-like architecture has high specific surface, sufficient pore volume, and increased interlayer spacing, which can provide more active insertion/extraction sites and reduce the Li+/Na+ diffusion resistance. When employed as anode materials for LIBs and SIBs, HMCMB anodes exhibit improved lithium and sodium storage capability. The HMCMB delivers a higher reversible capacity (471.1 and 177.5 mAh g?1 at 100 mA g?1 after 100 cycles) and a good rate performance (250 and 121 mAh g?1 even at 1000 mA g?1) for LIBs and SIBs, respectively.  相似文献   

14.
One-dimensional Co2+-doped Li4Ti5O12 nanofibers with a diameter of approximately 500 nm have been synthesized via a one-step controllable electrospinning method. The Co2+-doped Li4Ti5O12 nanofibers were systematically characterized by XRD, ICP, TEM, SEM, BET, EDS mapping, and XPS. Based on the cubic spinel structure and one-dimensional effect of Li4Ti5O12, Co2+-doped Li4Ti5O12 nanofibers exhibit the enlarged lattice volume, reduced particle size and enhanced electrical conductivity. More importantly, Co2+-doped Li4Ti5O12 nanofibers as a lithium ion battery anode electrode performs superior electrochemical performance than undoped Li4Ti5O12 electrode in terms of electrochemical measurements. Particularly, the reversible capacity of Co2+-doped Li4Ti5O12 electrode reaches up to 140.1 mAh g?1 and still maintains 136.5 mAh g?1 after 200 cycles at a current rate of 5 C. Therefore, one-dimensional Co2+-doped Li4Ti5O12 nanofiber electrodes, showing high reversible capacity and remarkable recycling property, could be a potential candidate as an anode material.  相似文献   

15.
Jie Liu  Chenqiang Du  Zhiyuan Tang 《Ionics》2014,20(10):1495-1500
The titanate spinel Li2NiTi3O8 is proposed for the first time as a new anode for lithium-ion batteries and successfully synthesized via a facile ball-milling assisted solid-state reaction method. The sample is characterized by X-ray diffraction patterns (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), galvanostatic charge–discharge tests, cyclic voltammetry (CV) tests, and electrochemical impedance spectroscopy (EIS). The results reveal that the Li2NiTi3O8 nanoparticles have well-distributed morphology, and the particle size ranges between 100 and 300 nm. Although the initial coulombic efficiency is only 56.3 %, the Li2NiTi3O8 electrode still exhibits a high rate capability and excellent cycling stability. The Li2NiTi3O8 anode provides a large capacity of 212.3 mAh g?1 at 0.1 A g?1 after 10 cycle, which is close to its theoretical capacity (223.6 mAh g?1). Even after 100 cycles, it still delivers a quite high capacity of 203.98 mAh g?1, with no significant capacity fading. This indicates that the as-synthesized Li2NiTi3O8 material is a promising anode material for lithium-ion batteries.  相似文献   

16.
High-quality monodisperse multiporous hierarchical micro/nanostructured ZnCo2O4 microspheres have been fabricated by calcinating the Zn1/3Co2/3CO3 precursor prepared by urea-assisted solvothermal method. The as-prepared products are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and Brunauer-Emmett-Teller (BET) measurement to study the crystal phase and morphology. When tested as anode material for lithium ion batteries, the multiporous ZnCo2O4 microspheres exhibit an initial discharge capacity of 1,369 mAh g?1 (3,244.5 F cm?3) and retain stable capacity of 800 mAh g?1 (1,896 F cm?3) after 30 cycles. It should be noted that the good electrochemical performances can be attributed to the porous structure composed of interconnected nanoscale particles, which can promote electrolyte diffusion and reduce volume change during discharge/charge processes. More importantly, this ZnCo2O4 3D hierarchical structures provide a large number of active surface position for Li+ diffusion, which may contribute to the improved electrochemical performance towards lithium storage.  相似文献   

17.
A dandelion-like mesoporous Co3O4 was fabricated and employed as anode materials of lithium ion batteries (LIBs). The architecture and electrochemical performance of dandelion-like mesoporous Co3O4 were investigated through structure characterization and galvanostatic charge/discharge test. The as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nanoneedles (about 40 nm in width and about 5 μm in length) with rich micropores. Electrochemical experiments illustrated that the as-prepared dandelion-like mesoporous Co3O4 as anode materials of LIBs exhibited high reversible specific capacity of 1430.0 mA h g?1 and 1013.4 mA h g?1 at the current density of 0.2 A g?1 for the first and 100th cycle, respectively. The outstanding lithium storage properties of the as-prepared dandelion-like mesoporous Co3O4 might be attributed to its dandelion-like mesoporous nanostructure together with an open space between adjacent nanoneedle networks promoting the intercalation/deintercalation of lithium ions and the charge transfer on the electrode. The enhanced capacity as well as its high-rate capability made the as-prepared dandelion-like mesoporous Co3O4 to be a good candidate as a high-performance anode material for LIBs.  相似文献   

18.
The cycling performance of lithium–sulfur batteries in binary electrolytes based on tetra(ethylene glycol)dimethyl ether (TEGDME) and 1,3-dioxolane(DOL) with lithium nitrate (LiNO3) additive were investigated. The highest ionic conductivity was obtained for 1 M LiN(CF3SO2)2 (LiTFSI) in TEGDME/DOL?=?33:67(volume ratio)-based electrolyte. The cyclic efficiency of lithium–sulfur batteries was dramatically increased with LiNO3 additive as a shuttle inhibitor in electrolytes. The lithium–sulfur cell assembled with 1 M LiTFSI in TEGDME/DOL containing 0.2 M LiNO3 additive for electrolyte, the elemental sulfur for cathode, and the lithium metal for anode demonstrated the initial discharge capacity of about 900 mAh g?1 and an enhanced cycling performance.  相似文献   

19.
In this work, we studied the deposition of garnet electrolyte thin films in order to realize an all-solid-state battery with high energy density. Therefore, in a first step we investigated the stability of the garnet Li5La3Ta2O12 with the spinel LiCoMnO4 in order to determine the temperature window for a successful thin film deposition on high-voltage spinels. A mixture of both materials showed a thermal stability up to 600 °C, so that all-solid-state batteries could be realized when the electrolyte is applied at a low deposition temperature. The second part of the work was the thin film deposition of Li5La3Ta2O12 by a sputter deposition process. When a stoichiometric Li5La3Ta2O12 sputter target was used, the surface of the target showed a depletion of lithium after several depositions, which leads to decreasing Li content in the thin films. In order to compensate the lithium loss we enriched the target with LiOH?H2O. Depositions carried out with the lithium rich target showed the garnet structure on glass substrates after deposition at 500 °C. The garnet structure was observed on Au-coated EN 1.4767 substrates already at a substrate temperature of 400 °C, which is 300 K lower than comparable depositions of Li7La3Zr2O12. These results show that the combination of thin garnet-structured electrolytes and high-voltage spinels is possible.  相似文献   

20.
The lithium-ion batteries show extremely poor cycling performance at low temperature. The main degradation mechanism is not clear. To address the fading mechanism, the cycling degradation of commercial LiFePO4/mesocarbon microbead (MCMB) batteries under various charge rate (1/10C, 1/3C, 1/2C, and 1C) at ?10 °C is systematically investigated using nondestructive tests combining with post-mortem analysis. The low-temperature charging under high charge rates of 1/3C, 1/2C, and 1C results in severe lithium plating, which leads to extremely serious capacity loss. In contrast, no lithium plating occurred under low charge rate of 1/10C. The lithium plating on the anode surface leads to consumption of active lithium ions and electrolyte, which causes the capacity decay and increases ohmic resistance (R b) with cycling number under high charge rates. The lithium plating on the anode surface is partially reversible, which brings about the capacity recovery of batteries after 80 cycles at 25 °C. The above results are proved by the followed post-mortem measurements. The evolution of the surface morphologies of MCMB electrodes upon cycling shows that a layer composed of rod-like lithium is formed on the anode surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号