首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnCo2O4 nanoflakes were directly grown on Ni foam via a two-step facile strategy, involving cathodic electrolytic electrodeposition (ELD) method and followed by a thermal annealing treatment step. The results of physical characterizations exhibit that the mesoporous ZnCo2O4 nanoflakes have large electroactive surface areas (138.8 m2 g?1) and acceptable physical stability with the Ni foam, providing fast electron and ion transport sites. The ZnCo2O4 nanoflakes on Ni foam were directly used as integrated electrodes for supercapacitors and their electrochemical properties were measured in 2 M KOH aqueous solution. The ZnCo2O4 nanoflake electrode exhibits a high capacitance of 1781.7 F g?1 at a current density of 5 A g?1 and good rate capability (62% capacity retention at 50 A g?1). Also, an excellent cycling ability at various current densities from 5 to 50 A g?1 was obtained and 92% of the initial capacitance maintained after 4000 cycles. The results demonstrate that the proposed synthesis route is cost-effective and facile and can be developed for preparation of electrode materials in other electrochemical supercapacitors.  相似文献   

2.
Inferior rate capability is a big challenge for LiTi2(PO4)3 anode for aqueous lithium-ion batteries. Herein, to address such issue, we synthesized a high-performance LiTi2(PO4)3/carbon/carbon nanotube (LTP/C/CNT) composite by virtue of high-quality carbon coating and incorporation of good conductive network. The as-prepared LTP/C/CNT composite exhibits excellent rate performance with discharge capacity of 80.1 and 59.1 mAh g?1 at 10 C and 20 C (based on the mass of anode, 1 C = 150 mA g?1), much larger than that of the LTP/C composite (53.4 mAh g?1 at 10 C, and 31.7 mAh g?1 at 20 C). LTP/C/CNT also demonstrates outstanding cycling stability with capacity retention of 83.3 % after 1000 cycles at 5 C, superior to LTP/C without incorporation of CNTs (60.1 %). As verified, the excellent electrochemical performance of the LTP/C/CNT composite is attributed to the enhanced electrical conductivity, rapid charge transfer, and Li-ion diffusion because of the incorporation of CNTs.  相似文献   

3.
A novel hydrothermal emulsion method is proposed to synthesize mesoporous NiMoO4 nanosphere electrode material. The size of sphere-shaped NiMoO4 nanostructure is controlled by the mass ratio of water and oil phases. Nickel acetate tetrahydrate and ammonium heptamolybdate were used as nickel and molybdate precursors, respectively. The resultant mesoporous NiMoO4 nanospheres were characterized by X-ray diffraction, N2 adsorption and desorption, scanning electron microscopy, and transmission electron microscopy. The electrochemical performances were evaluated by cyclic voltammetry (CV), cyclic chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in 6 M KOH solution. The typical mesoporous NiMoO4 nanospheres exhibit the large specific surface area of 113 m2 g?1 and high specific capacitance of 1443 F g?1 at 1 A g?1, an outstanding cyclic stability with a capacitance retention of 90 % after 3000 cycles of charge-discharge at a current density of 10 A g?1, and a low resistance.  相似文献   

4.
A dandelion-like mesoporous Co3O4 was fabricated and employed as anode materials of lithium ion batteries (LIBs). The architecture and electrochemical performance of dandelion-like mesoporous Co3O4 were investigated through structure characterization and galvanostatic charge/discharge test. The as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nanoneedles (about 40 nm in width and about 5 μm in length) with rich micropores. Electrochemical experiments illustrated that the as-prepared dandelion-like mesoporous Co3O4 as anode materials of LIBs exhibited high reversible specific capacity of 1430.0 mA h g?1 and 1013.4 mA h g?1 at the current density of 0.2 A g?1 for the first and 100th cycle, respectively. The outstanding lithium storage properties of the as-prepared dandelion-like mesoporous Co3O4 might be attributed to its dandelion-like mesoporous nanostructure together with an open space between adjacent nanoneedle networks promoting the intercalation/deintercalation of lithium ions and the charge transfer on the electrode. The enhanced capacity as well as its high-rate capability made the as-prepared dandelion-like mesoporous Co3O4 to be a good candidate as a high-performance anode material for LIBs.  相似文献   

5.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

6.
(Ni0.8Mn0.1Co0.1)(OH)2 and Co(OH)2 secondly treated by LiNi0.8Mn0.1Co0.1O2 have been prepared via co-precipitation and high-temperature solid-state reaction. The residual lithium contents, XRD Rietveld refinement, XPS, TG-DSC, and electrochemical measurements are carried out. After secondly treating process, residual lithium contents decrease drastically, and occupancy of Ni in 3a site is much lower and Li/Ni disorder decreases. The discharge capacity is 193.1, 189.7, and 182 mAh g?1 at 0.1 C rate, respectively, for LiNi0.8Mn0.1Co0.1O2-AP, -NT, and -CT electrodes between 3.0 and 4.2 V in pouch cell. The capacity retention has been greatly improved during gradual capacity fading of cycling at 1 C rate. The noticeably improved thermal stability of the samples after being treated can also be observed.  相似文献   

7.
For the urgent demand of higher capacity of lithium-ion battery anode, tin pyrophosphate has attracted more and more attention because of its high theoretical capacity, cheapness, and no toxicity. However, production of stable mesoporous sphere structure and improvement of electrochemical performance remain a challenge. Here, SnP2O7 spherical particles were successfully prepared through spray drying method with SnCl4·5H2O and C2H8O7P2. Crystallization and microstructure were investigated by TG-DSC, XRD, SEM, and TEM. With the obtained mesoporous SnP2O7 particles after carbon coating, it demonstrates a high initial capacity reaching up to 1218 mAh g?1 and a significantly stable cycling performance with 620 mAh g?1 after 80 deep electrochemical cycles.  相似文献   

8.
LiNi0.5Co0.2Mn0.3O2 particles of uniform size were prepared through carbonate co-precipitation method with acacia gum. The precursor of carbonate mixture was calcined at 800 °C, and a well-crystallized Ni-rich layered oxide was got. The phase structure and morphology were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The micro-sized particles delivered high initial discharge capacity of 164.3 mA h g?1 at 0.5 C (1 C?=?200 mA g?1) between 2.5 and 4.3 V with capacity retention of 87.5 % after 100 cycles. High reversible discharge capacities of 172.4 and 131.4 mA h g?1 were obtained at current density of 0.1 and 5 C, respectively. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed to further study the LiNi0.5Co0.2Mn0.3O2 particles. Anyway, the excellent electrochemical performances of LiNi0.5Co0.2Mn0.3O2 sample should be attributed to the use of acacia gum.  相似文献   

9.
Hierarchical Na2FeP2O7 spheres with nanoparticles were successfully fabricated by a facile spray drying method. A relatively low drying temperature was introduced in order to form a carbon layer on the surface. As a cathode material for sodium-ion batteries, it delivered a reversible capacity of 84.4 mAh g?1 at 0.1 C and showed excellent cycling and rate performance (64.7 mAh g?1 at 5 C). Furthermore, a full sodium battery was fabricated using SP-Na2FeP2O7 as the cathode and hard carbon as the anode, suffering almost no capacity loss after 400 cycles at 1 C. Due to its superior electrochemical property and the low materials cost, Na2FeP2O7 is becoming a promising cathode material for large-scale energy storage systems.  相似文献   

10.
Carbon-coated olivine-structured LiFe0.5Co0.5PO4 solid solution was synthesized by a facile rheological phase method and applied as cathode materials of lithium-ion batteries. The nanostructure’s properties, such as morphology, component, and crystal structure for the samples, characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) determination, X-ray photoelectron spectroscopy (XPS), and the electrochemical performances were evaluated using constant current charge/discharge tests and electrochemical impedance spectroscopy (EIS). The results indicate that nanoplatelet- and nanorod-structured LiFe0.5Co0.5PO4/C composites were separately obtained using stearic acid or polyethylene glycol 400 (PEG400) as carbon source, and the surfaces of particles for the two samples are ideally covered by full and uniform carbon layer, which is beneficial to improving the electrochemical behaviors. Electrochemical tests verify that the nanoplatelet LiFe0.5Co0.5PO4/C shows a better capacity capability, delivering a discharge specific capacity of 133.8, 112.1, 98.3, and 74.4 mAh g?1 at 0.1, 0.5, 1, and 5 C rate (1 C?=?150 mA g?1); the corresponding cycle number is 5th, 11th, 15th, 20th, and 30th, respectively, whereas the nanorod one possesses more excellent cycling ability, with a discharge capacity of 83.3 mAh g?1 and capacity retention of 86.9% still maintained after cycling for 100 cycles at 0.5 C. Results from the present study demonstrate that the LiFe0.5Co0.5PO4 solid solution nanomaterials with favorable carbon coating effect combine the characteristics and advantage of LiFePO4 and LiCoPO4, thus displaying a tremendous potential as cathode of lithium-ion battery.  相似文献   

11.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

12.
Carbon-coated olivine-structured LiFePO4/C composites are synthesized via an efficient and low-cost carbothermal reduction method using Fe2O3 as iron source at a relative low temperature (600 °C). The effects of two kinds of carbon sources, inorganic (acetylene black) and organic (sucrose), on the structures, morphologies, and lithium storage properties of LiFePO4/C are evaluated in details. The particle size and distribution of the carbon-coated LiFePO4 from sucrose (LiFePO4/SUC) are more uniform than that obtained from acetylene black (LiFePO4/AB). Moreover, the LiFePO4/SUC nanocomposite shows superior electrochemical properties such as high discharge capacity of 156 mAh g?1 at 0.1 C, excellent cyclic stability, and rate capability (78 mAh g?1 at 20 C), as compared to LiFePO4/AB. Cyclic voltammetric test discloses that the Li-ion diffusion, the reversibility of lithium extraction/insertion, and electrical conductivity are significantly improved in LiFePO4/SUC composite. It is believed that olivine-structured LiFePO4 decorated with carbon from organic carbon source (sucrose) using Fe2O3 is a promising cathode for high-power lithium-ion batteries.  相似文献   

13.
A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g?1 at 0.1C (1C = 160 mA g?1), compared to 112.3 mAh g?1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg?1) and high power density (574 W kg?1), thus suggested great potential application in lithium ion batteries (LIBs).  相似文献   

14.
Nitrogen-doped carbon nanofiber (NCNF) decorated LiFePO4 (LFP) composites are synthesized via an in situ hydrothermal growth method. Electrochemical performance results show that the embedded NCNF can improve electron and ion transfer, thereby resulting in excellent cycling performance. The as-prepared LFP and NCNF composites exhibit excellent electrochemical properties with discharge capacities of 188.9 mAh g?1 (at 0.2 C) maintained at 167.9 mAh g?1 even after 200 charge/discharge cycles. The electrode also presents a good rate capability of 10 C and a reversible specific capacity as high as 95.7 mAh g?1. LFP composites are a potential alternative high-performing anode material for lithium ion batteries.  相似文献   

15.
The nanostructured Na3V2(PO4)3 (NVP) cathode material has been synthesized using the sol-gel route for different molar fractions of citric acid as a carbon source during the synthesis. The nanostructured NVP as cores with carbonic shell structures are fabricated with two different citric acid molar ratios. The thermal treatment has been optimized to convert the amorphous carbon shell into graphitic carbon to realize the better electrical conductivity and thus effective electron transfer during the electrochemical charge transfer process. The X-ray diffraction measurements confirmed the rhombohedral crystallographic phase (space group R-3c) with average crystallite size ~28 ± 5 nm. The coin cells are assembled in a hybrid rechargeable electrochemical cell configuration with lithium as a counter electrode and LiPF6-EC:DEC:DMC (1:1:1 ratio) as the electrolyte. The electrochemical charge/discharge measurements are carried out at C/10 and C/20 rates and the measured specific capacities are 80 and 120 mAhg?1 for samples with lower and higher citric acid molar ratios, respectively. The studies suggest that NVP can be used as an effective cathode material in hybrid electrochemical cells, and a higher concentration of citric acid may result in the effective carbonic shell for optimal electron transfer and thus enhanced electrochemical performance.  相似文献   

16.
A simple sucrose-assisted combustion and subsequent high-temperature calcination route have been employed to prepare hierarchical porous ZnMn2O4 nanostructure. When used as an electrode for supercapacitor, the ZnMn2O4 electrode displays a high specific capacitance of 411.75 F g?1 at a current density of 1 A g?1, remarkable capacitance retention rate of 64.28 % at current density of 32 A g?1 compared with 1 A g?1, as well as excellent cycle stability (reversible capacity retention of 88.32 % after 4000 cycles). The outstanding electrochemical performances are mainly attributed to its hierarchical porous architecture, which provides large reaction surface area, fast ion and electron transfer, and good structure stability. All these impressive results demonstrate that ZnMn2O4 shows promise for its application in supercapacitors.  相似文献   

17.
A flexible Co3O4 hollow microsphere/graphene/carbon nanotube hybrid film is successfully prepared through a facile filtration strategy and a subsequent thermally treated process. The composition, morphology, and structure of the as-prepared film are characterized by X-ray diffraction, X-ray photoelectron spectrometer, scanning electron microscopy, and transmission electron microscopy. Based on the morphology characterizations on the hybrid film, the Co3O4 hollow microspheres are uniformly and closely attached on three-dimensional (3D) graphene/carbon nanotubes (GR/CNTs) network, which decreases the agglomeration of Co3O4 microspheres effectively. In this hybrid film, the 3D GR/CNT network which enhances conductance as well as prevents aggregation is a benefit to help Co3O4 to exert its lithium storage capabilities sufficiently. When used as a binder-free anode material for lithium-ion batteries, the hybrid film delivers excellent electrochemical properties involving reversible capacity (863 mAh g?1 at a current density of 100 mA g?1) and rate performance (185 mAh g?1 at a current density of 1600 mA g?1).  相似文献   

18.
A facile sol-gel approach for the synthesis of lithium titanate composite decorated with N-doped carbon material (LTO/NC) is proposed. Urea is used as a nitrogen source in the proposed approach. The LTO/NC exhibits superior electrochemical performances as an electrode material for lithium-ion batteries, delivering a discharge capacity of as high as 103 mAh g?1 at a high rate of 20 C and retaining a stable reversible capacity of 90 mAh g?1 after 1000 cycles, corresponding to 100% capacity retention. These excellent electrochemical performances are proved by the nanoscale structure and N-doped carbon coating. NC layers were uniformly dispersed on the surface of LTO, thus preventing agglomeration, favoring the rapid migration of the inserted Li ion, and increasing the Li+ diffusion coefficient and electronic conductivity. LTO with the appropriate amount of NC coating is a promising anode material with applications in the development of high-powered and durable lithium-ion batteries.  相似文献   

19.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

20.
The poor electronic conductivity and low lithium-ion diffusion are the two major obstacles to the largely commercial application of LiFePO4 cathode material in power batteries. In order to improve the defects of LiFePO4, a novel carbon source polyacrylonitrile (PAN), which would form the hierarchical porous structure after carbonization, is fabricated and used. This work comes up with a simple and facile carbothermal reduction method to prepare porous-carbon-coated LiFePO4 (C-LiFePO4-PC) composite and to study the effect of carbon-coated temperature on ameliorating the electrochemical performance. The obtained C-LiFePO4-PC composite shows a high initial discharge capacity of 164.1 mA h g?1 at 0.1 C and good cycling stability as well as excellent rate capacity (49.0 mA h g?1 at 50 C). The most possible factors that improve the electrochemical performance could be related to the enhancement of electronic conductivity and the existence of porous carbon layers. In a word, the C-LiFePO4-PC material would become an excellent candidate for application in the fields of lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号