首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Li2BaP2O7 compound has been obtained by the conventional solid-state reaction and characterized by X-ray powder diffraction. The title material crystallizes in the monoclinic system with C2/c space group. Electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 589–724 K. Temperature dependence of the DC conductivity and modulus was found to obey the Arrhenius law. The obtained values of activation energy are different which confirms that transport in the titled compound is not due to a simple hopping mechanism. AC conductivity measured follows the power-law dependence σ AC?~?ω s typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process.  相似文献   

2.
Lithium samarium oxide has been prepared by solid-state reaction method and characterized by X-ray diffraction (XRD) and impedance spectroscopy. XRD pattern of the sample reveals the formation of the sample. The conductivity studies, dielectric studies, and modulus analysis of the samples have been carried out for different temperatures. The bulk conductivity of the sample has been found to be 1.21 × 10−5 Scm−1 at 420 °C. The temperature variation of the direct current conductivity obeys the Arrhenius relation. The modulus analysis of the sample indicates the non-Debye nature of the sample which corresponds to long-time slow polarization and relaxation of hopping charges.  相似文献   

3.
A complex investigation of the dynamics of electronic excitations in nonlinear optical crystals of ammonium dihydrophosphate NH4H2PO4 was performed using low-temperature vacuum UV luminescence spectroscopy with time resolution upon selective photoexcitation by synchrotron radiation. Data on the photoluminescence decay kinetics, time-resolved photoluminescence spectra (2–6.2 eV), and time-resolved photoluminescence excitation spectra (4–24 eV) were obtained for the first time for NH4H2PO4 crystals at 8 K. It is ascertained that the photoluminescence of NH4H2PO4 crystals in the vicinity of 4.7 eV has intrinsic character due to the radiative annihilation of self-trapped excitons. Possible channels of generation and decay of relaxed and unrelaxed electronic excitations in NH4H2PO4 crystals are discussed.  相似文献   

4.
A model of electron transfer by tunneling between trapped electron and hole centers in crystals with hydrogen bonds under the conditions of thermostimulated mobility of one carrier type in the recombination process has been developed. The proposed model describes all features in the kinetics of induced optical density relaxation observed in nonlinear optical crystals of KH2PO4 (KDP) and NH4H2PO4 (ADP) on a wide temporal scale (10−8–10 s) under pulsed irradiation. The results of model calculations have been compared with experimental data on the photoinduced transient optical absorption (TOA) in KDP and ADP crystals in the visible and UV ranges. The nature of the radiation-induced defects, which account for the TOA, and the dependence of the TOA decay kinetics on the temperature, excitation power, and other experimental conditions have been considered.  相似文献   

5.
Lithium pyrophosphate compound Li2CuP2O7 has been synthesized through solid state reaction method. FTIR and XRD results, realized at room temperature, indicate respectively the dominant feature of pyrophosphate anion (P2O7)4? and a pure monoclinic phase with I2/a space group. Electrical and dielectric properties have been studied using impedance spectroscopy complex over a wide temperature (576–710 K) and frequency (209 Hz–1 MHz) range. From the direct and alternative conductivities (DC and AC), electrical conduction is found to be thermally activated process. The frequency-dependent AC conductivity obeys Jonscher’s universal power law σAC~Aωs. The differential scanning calorimetry spectrum discloses phase transition at 622 K.  相似文献   

6.
The aspects of structure, dipole ordering, and ionic conductivity of the Na3Cr2(PO4)3 crystal with the four polymorphic phases (α, α', β, and γ) have been investigated. The features of the α-Na3Cr2(PO4)3 crystal structure and its dipole ordering and relaxation polarization in the low-temperature α and α' phases have been refined. The occurrence of Na3Cr2(PO4)3 dipole ordering in the α and α' phases and high ionic conductivity in the β and γ phases is attributed to the structural changes in the rhombohedral [Me2(PO4)3]–33∞ crystal frame upon phase transformations α → α', α' → β, and β → γ. A model for explaining the dipole ordering and ionic conductivity phenomena in Na3Cr2(PO4)3 is proposed.  相似文献   

7.
A complex investigation of the dynamics of electronic excitations in potassium dihydrophosphate (KDP) crystals is performed by low-temperature time-resolved vacuum ultraviolet optical luminescence spectroscopy with subnanosecond time resolution and with selective photoexcitation by synchrotron radiation. For KDP crystals, data on the kinetics of the photoluminescence (PL) decay, time-resolved PL spectra (2–6.2 eV), and time-resolved excitation PL spectra (4–24 eV) at 10 K were obtained for the first time. The intrinsic character of the PL of KDP in the vicinity of 5.2 eV, which is caused by the radiative annihilation of self-trapped excitons (STEs), is ascertained; σ and π bands in the luminescence spectra of the STEs, which are due to singlet and triplet radiative transitions, are resolved; and the shift of the σ band with respect to the π band in the spectra of the STEs is explained.  相似文献   

8.
The lead pyrophosphate, Pb2P2O7, compound was prepared by conventional solid-state reaction and identified by X-ray powder diffractometer. Pb2P2O7 has a triclinic structure whose electrical properties were studied using impedance spectroscopy technique. Both impedance and modulus analysis exhibit the grain and grain boundary contribution to the electrical response of the sample. The temperature dependence of the bulk and grain boundary conductivity were found to obey the Arrhenius law with activation energies E g = 0.66 eV and E gb = 0.67 eV, respectively. The scaling behavior of the imaginary part of the complex impedance suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

9.
The temperature dependence of the electrical conductivity of the compound 2,4,4-trimethyl-4,5-dihydro-3H-benzo[b] [1,4] diazepin-1-ium tetrachlorocadmiate in the different phases follows the Arrhenius law. The imaginary part of the permittivity constant is analyzed with the Cole–Cole formalism. In the temperature range 348–394 K, the activation energy of conductivity obtained from complex permittivity in regions I and II are, respectively, 1.03 and 0.33 eV, and E m (in regions I and II are, respectively, 0.97 and 0.36 eV) obtained from the modulus spectra is close, suggesting that the ion transport is probably due to a hopping mechanism. The Kohlrausch–Williams–Watts function, j(t) = exp( - ( \fractt\textKWW )b ) \varphi (t) = \exp \left( { - {{\left( {\frac{t}{{{\tau_{\text{KWW}}}}}} \right)}^\beta }} \right) , and the coupling model are utilized for analyzing electric modulus at various temperatures. The decreasing of β at 373 K is due to approaching the temperatures of change in the conduction mechanism of the sample.  相似文献   

10.
N. Nouiri  K. Jaouadi  N. Zouari  T. Mhiri 《Ionics》2017,23(6):1461-1470
The Rb3(HSeO4)2.5(H2PO4)0.5 compound was prepared and its thermal behavior and electric properties were investigated. The thermogravimetry (TGA) analysis and the differential scanning calorimetric (DSC) show the presence of a structural phase transition of the title compounds at 374 K which is confirmed by the variation of fp and σdc as a function of temperature. The complex impedance of the Rb3(HSeO4)2.5(H2PO4)0.5 compound has been investigated in the temperature range of 295–453 K and in the frequency range 209 Hz–1 MHz. The impedance plots show semicircle arcs at different temperatures, and an electrical equivalent circuit has been proposed to explain the impedance results. The circuits consist of the parallel combination of bulk resistance Rp and constant phase elements CPE1 in series with fractal capacity CPE2. The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law. The conductivity dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of modulus, conductivity data, and circuit equivalent confirm that the transport is through the ion hopping mechanism, dominated by the motion of the H+ proton in the structure of the investigated materials.  相似文献   

11.
We report the Fourier transform infrared (FTIR)–Raman spectroscopy study of spinel Li–Fe–Ti–O oxides viz., LiFeTiO4 and Li2FeTiO4 in order to probe structural details such as type of bonding networks viz., octahedral and tetrahedral, and type of different atomic bonds present in those materials. Both the samples were prepared through solid-state reaction route prior to high-energy ball-milling. All the phases prepared through solid-state reaction and ball-milled were probed using X-ray diffraction, field emission scanning electron microscopy, and FTIR–Raman spectroscopy. X-ray diffraction study indicates spinel phase formation with Fd3m space group symmetry for both LiFeTiO4 and Li2FeTiO4. However, pure phase of Li2FeTiO4 was not achieved in these preparation routes, rather mixed phases of Li2FeTiO4 and Fe2TiO4 were achieved. Field emission scanning electron microscopy (FESEM) analysis indicated porous microstructure for LiFeTiO4 while more agglomerated microstructure for Li2FeTiO4. Ball-milling reduces the grain size partly for both the samples. FTIR–Raman spectroscopy indicates the presence of LiO4 tetrahedral, LiO6 and TiO6 octahedral in the spinel network. Presence of Li–Li–O type bonding was also indicated from spectroscopy analysis. Existence of Fe2TiO4 phase with Li2FeTiO4 was also identified from both FTIR and Raman spectrum. Effect of ball-milling on the spectrum has been exhibited by broadening and peak shifting the FTIR–Raman spectrum, arising from the enhanced lattice strain and structural disorder.  相似文献   

12.
For over two decades, the high-temperature phase transition (HTPT) at around T p = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at T p. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO3), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO3. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below T p is also explained.  相似文献   

13.
The conditions of synthesizing a new Ag6SnS4Br2 compound were studied. The crystallographic parameters of the unit cell were determined as follows: space group Pnma, a=6.67050(10) Å, b=7.82095(9) Å, c=23.1404(3) Å, and Z=4. The total electrical conductivity and its ionic component were measured by a dc probe method in the temperature range 210–380 K. Kinks in the conductivity curve and the differential thermogram of heating the alloy were revealed at 235 K. It was concluded that the mass and charge transfers in the compacted Ag6SnS4Br2 alloy powder have an intragrain character.  相似文献   

14.
CoO and Li2O mixed with borotellurite glasses in the compositions, (B2O3)0.2-(TeO2)0.3-(CoO) x -(Li2O)0.5?x, where x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50 were synthesized by fast cooling the melt to room temperature. Absence of crystalline phases in the samples was confirmed by X-ray diffraction studies. Changes in dielectric properties with frequency and temperature over wide ranges have been measured. Dielectric constant and loss increased with increase in CoO content. AC conductivity has been analyzed using Mott’s small polaron model and activation energy was determined. Activation energy decreased and conductivity increased with increase in CoO content up to 0.3 mole fractions, and they behaved oppositely for higher concentration of CoO. This observed change of trend in activation energy and conductivity at 0.3 mole fraction of CoO ascribed to switch over of conduction mechanism occurring from predominantly ionic to electronic regime. For the first time, a transition of conduction mechanism is observed in borotellurite glasses. Temperature and composition independent relaxation mechanism in these glasses has been confirmed by plotting the scaled conductivity master curves. Hunt’s model has been invoked to understand the frequency dispersion of conductivity.
Graphical abstract Plots of ln(ε′′) versus ln(F) for BTCL2 glass at different temperatures
  相似文献   

15.
The time dependences of polarization of K0.88(NH4)0.12H2PO4 mixed crystal have been studied within the temperature range of 74–100 K. Two mechanisms of polarization relaxation were found. The first mechanism is caused by domain walls lateral motion and their interaction with point lattice defects. The second one supposedly is due to polar regions infiltration through the regions of frustrated paraelectric phase.  相似文献   

16.
The Na2WO4 compound has been obtained by the conventional solid-state reaction and characterized by X -ay powder diffraction. The title material crystallizes in the cubic system with Fd-3m space group. The electrical properties of the compound have been studied using complex impedance spectroscopy in the frequency range 200 Hz–5 MHz and temperature range 586–679 K. Two semicircles are observed in impedance plot indicating the presence of two relaxation processes in the compound associated with the grain and grain boundary. The relaxation behavior of the grain and grain boundary of the Na2WO4 are also obtained from the analyzed electrical modulus data. AC conductivity measured follows the power-law dependence σAC~ωs typical for charge transport. Therefore, the experimental results are analyzed with various theoretical models. Temperature dependence of the power law exponent s strongly suggests that tunneling of large polarons is the dominant transport process. The mechanism of conduction is probably due from the displacements of the Na+ ion in the tunnel-type cavities along [111] direction.  相似文献   

17.
The gadolinia-doped ceria (GDC) thin films were deposited by pulsed laser deposition. Samples with special geometry were prepared which allowed us to characterize GDC film in across-plane direction. The electrical properties of the films were investigated by means of impedance spectroscopy in the frequency range of 10 Hz to 10 GHz and 380–600 K temperature interval. The data analysis was performed by using appropriate equivalent circuit. The equivalent circuit modeled thin GDC film itself, platinum metal connections (traces) in the dielectric medium of sapphire substrate and interfaces between the film and platinum electrodes. Hence, several factors influenced the impedance spectra, namely the properties of substrate, the oxygen-ion transport in the film, ion blocking at the interface between the film and the electrode, and metal traces. The electrical properties of GDC thin films were compared with these of bulk ceramics and showed similar conductivity and dielectric permittivity values. The study also revealed that measurement data at electrical field frequencies of up to 10 GHz were particularly important to correctly estimate electrical properties of GDC thin films, because at high temperatures the electric response of GDC film shifts to high frequencies (higher than 1 MHz at 600 K). The thin film sample preparation for high frequency measurements and fitting of impedance data by using relatively simple equivalent circuit model is presented.  相似文献   

18.
Li1,3Ti0,7Al0,3(PO4)3 (LATP) powder was obtained by a conventional melt-quenching method and consolidated by field-assisted sintering technology (FAST) at different temperatures. Using this technique, the samples could be sintered to relative densities in the range of 93 to 99 % depending on the sintering conditions. Ionic and thermal conductivity were measured and the results are discussed under consideration of XRD and SEM analyses. Thermal conductivity values of 2 W/mK and ionic conductivities of 4?×?10?4 Scm?1 at room temperature were obtained using relatively large particles and a sintering temperature of 1000 °C at an applied uniaxial pressure of 50 MPa.  相似文献   

19.
Electron paramagnetic resonance (EPR) studies have been performed with the aim of determining the valence state and local crystal structure of the nearest environment of vanadium ions in the initial, charged, and discharged samples of the cathode material NaxV2(PO4)3 (1 ≤ x ≤ 3). It has been found that the charged sample (x = 1) is characterized by an intense signal corresponding to V4+ ions located in a highly distorted octahedral crystal field. An EPR signal with the g-factor close to the g-factor of the V4+ ion has also been observed in the initial sample (x = 3), where the intensity of the resonance signal is one order of magnitude lower than that in the charged sample. It has been revealed that the resonance signal under consideration is associated with the formation of antisite defects when a part of vanadium ions are located in sites of sodium ions. It has also been found that the intensity of this signal increases after a complete charge–discharge cycle (x = 3).  相似文献   

20.
High pressure resistivity measurements of the organic compound (TMTTF)2BF4 have been performed in a newly developped Bridgman cell providing good pressure conditions on a wide pressure range. For the first time in this compound a zero resistance superconducting state is observed between 3 and 4 GPa. At temperatures above the superconducting transition, the resistivities of the two high quality samples show a different behavior. One sample, provides indications for a magnetic quantum critical point at the maximum of Tc, whereas in the other antiferromagnetic spin-fluctuations are present above Tc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号