首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of material anisotropy and inhomogeneity on void nucleation and growth in incompressible anisotropic nonlinearly elastic solids are examined. A bifurcation problem is considered for a composite sphere composed of two arbitrary homogeneous incompressible nonlinearly elastic materials which are transversely isotropic about the radial direction, and perfectly bonded across a spherical interface. Under a uniform radial tensile dead-load, a branch of radially symmetric configurations involving a traction-free internal cavity bifurcates from the undeformed configuration at sufficiently large loads. Several types of bifurcation are found to occur. Explicit conditions determining the type of bifurcation are established for the general transversely isotropic composite sphere. In particular, if each phase is described by an explicit material model which may be viewed as a generalization of the classic neo-Hookean model to anisotropic materials, phenomena which were not observed for the homogeneous anisotropic sphere nor for the composite neo-Hookean sphere may occur. The stress distribution as well as the possible role of cavitation in preventing interface debonding are also examined for the general composite sphere.  相似文献   

2.
The paper presents a three-dimensional solution to the equilibrium equations for linear elastic transversely isotropic inhomogeneous media. We assume that the material has constant Poisson’s ratios, and its Young’s and shear moduli have the same functional form of dependence on the co-ordinate normal to the plane of isotropy. We show, apparently for the first time, that stresses and displacements in such an inhomogeneous transversely isotropic elastic solid can be represented in terms of two displacement functions which satisfy the second- and fourth-order partial differential equations. We examine and discuss key aspects of the new representation; they include the relationship between the new displacement functions and Plevako’s solution for isotropic inhomogeneous material with constant Poisson’s ratio as well as the application of the new representation to some important classes of three-dimensional elasticity problems. As an example, the displacement function is derived that can be used to determine stresses and displacements in an inhomogeneous transversely isotropic half-space which is subjected to a concentrated force normal to a free surface and applied at the origin (Boussinesq’s problem).  相似文献   

3.
The gradient transport model for k is extended to classes of turbulent flows for which the gradient transport hypothesis is relevant but the anisotropy of the Reynolds stress, to which the eddy diffusivity is proportional, is large and variable. In highly anisotropic turbulence the standard isotropic model used in engineering practice is fundamentally wrong and the conventional anisotropic approximation inadequate. The work is motivated by the important observations that the eddy diffusivity coefficient for a standard gradient transport model for various transported quantities is a factor of 3–10 times larger in highly anisotropic turbulence than that used in standard engineering models. While the conventional anisotropic eddy diffusivity approximation appears adequate for material conserved scalars it is inadequate for k. The problem is solved by addressing the anisotropy of the turbulent transport of k at the level of the underlying third order tensor. It is shown that, unlike the traditional transport models for k, the orientation of the anisotropy with respect to the direction of the gradient plays a crucial role not accounted for in conventional models used in engineering calculations. The new anisotropic eddy diffusivity tensor is quadratic in the anisotropy (the traditional model is linear in the anisotropy). It is shown that the new more rigorous anisotropic eddy diffusivity varies 300% more than the standard model comparing the isotropic limit to the value for the two-dimensional limit. The two-dimensional limit is important in strongly stably stratified flows, in pressure gradient or shock driven flows and in rotating flows. Using the simple shear and the homogeneous non-equilibrium Rayleigh Taylor turbulence the new anisotropic diffusivity tensor is validated in inhomogeneous Rayleigh Taylor turbulence at early and late times.  相似文献   

4.
The degeneration of image singularities from an anisotropic material to an isotropic material for a half-plane is discussed in this study. The Green’s functions for anisotropic and isotropic half-planes with traction free boundary subjected to concentrated forces and dislocations have been obtained by many authors. It was commonly accepted that the solution of isotropic problem cannot be derived from anisotropic solutions. However, we believe that this possibility exists as we will demonstrate in this paper. Anisotropic materials include only image singularities of order O(1/r) (i.e., forces and dislocations) existing on image points. There are many image points for anisotropic materials and the locations of these image points depend on the material constants. However, isotropic materials have only one image point with higher order image singularities (O(1/r2), O(1/r3)). From the analysis provided in this study, it is found that the higher order image singularities for an isotropic half-plane are generated by combining the concentrated forces and dislocations when an anisotropic material degenerates to an isotropic material. The solutions of higher order image singularities for isotropic material are dependent. Therefore, these image singularities can be combined to form only three or four simpler image singularities acting on an image point of the isotropic material.  相似文献   

5.
The existence of frequency-dependent fundamental solutions for anisotropic, inhomogeneous continua under plane strain conditions is a necessary pre-requisite for studying wave motion, either in geological media or in composites with both depth and direction-dependent material parameters. The path followed herein for recovering such types of solutions is (a) to use a simple algebraic transformation for the displacement vector so as to bring about a governing partial differential equation of motion with constant coefficients, albeit at the cost of introducing a series of constraints on the types of material profiles; (b) to carefully examine these constraints, which reveal a rather rich range of possible variations of the elastic moduli in both vertical and lateral directions; and (c) to use the Radon transformation for handling material anisotropy. Depending on the type of constraints that have been introduced, two basic classes of materials are identified, namely ‘Case A’ where further restrictions are placed on the elasticity tensor and ‘Case B’ where further restrictions are placed on the material profile. We note at this point that for isotropic materials, the elasticity tensor constraints correspond to equal Lamé constants or, alternatively, to a fixed Poisson's ratio. The present methodology is quite general and the homogeneous anisotropic medium, as well as the inhomogeneous isotropic one, can both be recovered as special cases from the results given herein.  相似文献   

6.
The asymptotic problem of a kinked interfacial crack in dissimilar anisotropic materials under antiplane deformation is investigated. The linear transformation method for the problem of the anisotropic bimaterial with a straight interface is proposed. The stress intensity factor for the kinked interfacial crack in the anisotropic composite is obtained from the solution of the transformed problem of the kinked interfacial crack in the isotropic bimaterial based on the linear transformation method. The effects of the material parameters as well as the kink angle on the stress intensity factor are discussed from numerical results of the stress intensity factor. The finite element analysis is carried out to verify the stress intensity factor obtained by using the linear transformation. The influence of the material orientations on the stress intensity factor is investigated for the kinked crack in the bimaterial consisting of dissimilar inclined orthotropic materials.  相似文献   

7.
A closed solution is obtained for the axisymmetric boundary-value problem of dynamics for a finite cylinder with exponential elasticity and inertial inhomogeneity and a certain relationship between elastic constants on the basis of correlations of the linear theory of elasticity of an anisotropic inhomogeneous body. The boundary conditions are arbitrary on the curvilinear surface and are given in mixed form on the ends. The method of finite integral transforms is employed. Specific cases for cylinders of transverscly isotropic and isotropic homogeneous material are discussed. Institute of Architecture and Civil Engineering, Samara, Russia. Translated from Prikladnaya Mekhanika, Vol. 35, No. 4, pp. 19–29, April, 1999.  相似文献   

8.
In this work a generalized anisotropic model in large strains based on the classical isotropic plasticity theory is presented. The anisotropic theory is based on the concept of mapped tensors from the anisotropic real space to the isotropic fictitious one. In classical orthotropy theories it is necessary to use a special constitutive law for each material. The proposed theory is a generalization of classical theories and allows the use of models and algorithms developed for isotropic materials. It is based on establishing a one-to-one relationship between the behavior of an anisotropic real material and that of an isotropic fictitious one. Therefore, the problem is solved in the isotropic fictious space and the results are transported to the real field. This theory is applied to simulate the behavior of each material in the composite. The whole behavior of the composite is modeled by incorporating the anisotropic model within a model based on a modified mixing theory.  相似文献   

9.
The present paper deals with finite inhomogeneous shearing deformations of a slab of a special anisotropic solid. Two cases according to the directions of the anisotropic director of the medium are examined. In one case the solution reduces to a quadrature and gives an exact deformation field for particular values of the material constants. In the other case an exact solution is obtained. All such solutions reduce to the same existing solution for the corresponding isotropic elastic material. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
两种各向异性材料界面共线裂纹的反平面问题   总被引:2,自引:1,他引:2  
本文研究两种各向异性材料界面共线裂纹的反平面剪切问题。利用复变函数方法,提出了一般问题公式和某些实际重要问题的封闭形式解。考察了裂纹尖端附近的应力分布并给出了应力强度因子公式。从本文解签的特殊情形,可以直接导出两种各向同性材料界面裂纹,均匀各向异性材料共线裂纹以及均匀各向同性材料共线裂纹的相应问题公式,其中包括已有的经典结果。  相似文献   

11.
In this study the generally anisotropic and angularly inhomogeneous wedge, under power law tractions of order n of the radial coordinate r at its external faces is considered. At first, using variable separable relations in the equilibrium equations, the strain–stress relations and the strain compatibility equation, a differential system of equations is constructed and investigated. Decoupling this system, an ordinary differential equation is derived and the stress and displacement fields may be determined. The proposed procedure is also applied to the elastostatic problem of an isotropic and angularly inhomogeneous wedge. In the sequel William's asymptotic analysis in the case of angular inhomogeneity is examined. Finally, applications for the case of an angularly inhomogeneous wedge-shape dam and for the asymptotic procedure in an isotropic wedge with angularly varying shear modulus, are made.  相似文献   

12.
A procedure has been developed in previous papers for constructing exact solutions of the equations of linear elasticity in a plate (not necessarily thin) of inhomogeneous isotropic linearly elastic material in which the elastic moduli depend in any specified manner on a coordinate normal to the plane of the plate. The essential idea is that any solution of the classical equations for a hypothetical thin plate or laminate (which are two-dimensional theories) generates, by straightforward substitutions, a solution of the three-dimensional elasticity equations for the inhomogeneous material. In this paper we consider a thick plate of isotropic elastic material with a thin surface layer of different isotropic elastic material. It is shown that the interface tractions and in-plane stress discontinuities are determined only by the initial two-dimensional solution, without recourse to the three-dimensional elasticity theory. Two illustrative examples are described.  相似文献   

13.
本文研究了由各向同性和各向异性半无限接合而成的复合材料中的应力强度因子问题,在复合材料的接合面附近处具有与接合面平行且共线的两个Griffith裂纹,裂纹面上作用有剪应力,本文利用付利叶变换将混合边值问题归毕为求解奇异积分方程问题,为求解这些方程,将裂纹面上,下的位移差展成级数,并满足理解纹面外侧边界条件,级数中的待定系数利用裂纹面内的边界条件和施密特方法求得,本文对硼纤维塑料和铝板接合的复合材料  相似文献   

14.
We construct a mathematical model describing thermomechanical interaction between composite structure elements (isotropic particles of the matrix and anisotropic short fibers) and the macroscopically isotropic elastic medium with desired thermoelastic characteristics. At the first stage of this model, the self-consistency method is used to obtain relations determining the elasticity moduli of the composite, and at the second stage, the model permits determining its linear thermal expansion coefficient. The dual variational statement of the linear thermoelasticity problem in an inhomogeneous solid permits obtaining two-sided estimates for the bulk elasticity modulus, shear modulus, and linear thermal expansion coefficient of the composite under study. The calculated dependencies presented in the paper permit predicting the thermoelastic characteristics of a composite reinforced by anisotropic short fibers (including those in the form of nanostructure elements).  相似文献   

15.
In this study, the generally anisotropic and angularly inhomogeneous wedge under a monomial type of distributed loading of order n of, the radial coordinate r at its external faces is considered. At first, using variable separable relations in the equilibrium equations, the strain–stress relations and the strain compatibility equation, a differential system of equations, is constructed. Decoupling this system, an ordinary differential equation is derived and the stress and displacement fields may be determined. The proposed procedure is also applied to the elastostatic problem of an isotropic and angularly inhomogeneous wedge. The special cases of loading of order n=−1 and n=−2, where the self-similarity approach is not valid, are examined and the stress and displacements fields are derived. Applications are presented for the cases of an angularly inhomogeneous wedge and in the case of a bi-material isotropic wedge.  相似文献   

16.
17.
Summary The aim of this paper is (1) to develop a rational method for the analysis of an arbitrarily laminated elastic, isotropic or transversely isotropic hollow sphere under internal and/or external pressure, (2) to solve the problem of a periodically layered sphere consisting of many equal groups of n different thin layers. The transfer matrix method is used, and exact closed-form solutions are worked out, supplemented by a numerical example. It turns out that by means of the proposed homogenization an originally (periodically) inhomogeneous isotropic sphere is replaced by a homogeneous anisotropic one belonging to the type of spherical symmetric anisotropy. Received 20 October 1997; accepted for publication 15 December 1997  相似文献   

18.
A plane problem for a thermally insulated interface crack with a contact zone in an isotropic bimaterial under tension–shear mechanical loading and a temperature flux is considered. The expressions for the stresses and the electrical flux as well as for the derivatives of the displacement and the temperature jumps at the material interfaces via sectionally holomorphic mechanical and thermal potential functions are given. After the solution of the thermal problem the inhomogeneous combined Dirichlet–Riemann boundary value problem is formulated and solved exactly. The stresses at the interface and the stress intensity factors at the singular points are presented in a clear analytical form. Special attention is devoted to the case of a small contact zone when the stress intensity factors can be presented in form similar to the associated presentation for an “open” crack model. A transcendental equation and an asymptotic analytic formula for the determination of the real contact zone length are derived. It is shown that for a certain bimaterial this length as well as the correspondent stress intensity factor are defined by a single parameter which depends on the normal-shear loading and the heat flux.  相似文献   

19.
This paper gives a unified approach to analyze two-dimensional elastic deformations of a composite body consisting of two dissimilar anisotropic or isotropic materials perfectly bonded along a planar interface. The Eshelby et al. formalism of anisotropic elasticity is linked with that of Kolosov-Muskhelishvili for isotropic elasticity by means of two complex matrix functions describing completely the arising elastic fields. These functions, whose elements are holomorphic functions, are defined as the two-phase potentials of the bimaterial. The present work is concerned with bi-materials whose constituent materials occupy the whole space and are connected by a planar interface. The elastic fields arising in such a bimaterial are given by universal relationships in terms of the two-phase potentials. Then, the general results obtained are implemented to study two interesting bimaterial problems: the problem of a uniformly stressed bimaterial with a perfect interfacial bonding, and the interface crack problem of a bimaterial with a general loading. For both problems, all combinations of the elastic properties of the constituent materials are considered. For the first problem, the constraints, which must be imposed between the components of the applied uniform stress fields, are established, so that they are admissible as elastic fields of the bimaterial. For the interface crack problem, the solution is obtained for a general loading applied in the body. Detailed results are given for the case of a remote uniform stress field applied to the bimaterial constituents.  相似文献   

20.
Crack tip stress and displacement fields are useful for studying the fracture behavior of cracks in both isotropic and anisotropic materials. Under certain boundary conditions, crack surfaces could overlap, a condition that could be more prevalent for the anisotropic case as compared with isotropic materials. Conditions can be derived for different loading conditions and material properties such that overlap of the crack faces would not occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号