首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation-induced grafting of acrylic acid onto chitosan beads was performed in solution at a dose rate of 20.6 Gy/min of cobalt-60 gamma rays. The effect of absorbed dose on grafting yield was investigated. The characterization of the grafted material was performed by FTIR spectroscopy and the swelling measurements at different pHs. The grafting yield increased with the increase in dose, it reached 80% at 40 kGy irradiation dose.The removal of Pb and Cd ions from aqueous solutions was investigated with both ungrafted and grafted chitosan beads. The sorption behavior of the sorbents was examined through pH, kinetics and equilibrium measurements. Grafted chitosan beads presented higher sorption capacity for both metal ions than unmodified chitosan beads.  相似文献   

2.
In this study, three different chitosan microsphere derivatives were prepared as sorbents for basic dyes. Preparation was succeeded by a novel cross-linking method based on ionic gelation with tripolyphosphate and subsequent covalent cross-linking with glutaraldheyde in order to address the large amount of swelling of the powdered form of the respective derivatives. Basic blue 3G (dye) was selected as the sorbate, and chitosan microsheres grafted with acrylamide and acrylic acid were used as biosorbents. Techniques such as FTIR spectroscopy, SEM, and swelling measurements facilitated the evaluation of the materials. Sorption-desorption experiments over the whole pH range were carried out to reveal the optimum value of sorption-desorption. The Langmuir isotherm model was used to fit the equilibrium experimental data, giving a maximum sorption capacity of 0.808 mmol/g at 338 K. An intraparticle diffusion model was employed to fit the kinetic data, and the resulting diffusion coefficients were in the range of (1-10) x 10(-11) m(2)/s. Thermodynamic analysis showed that the sorption process was spontaneous and endothermic with an increased randomness. In addition, sorption experiments were realized with a mixture of three basic dyes at various concentrations of sorbents.  相似文献   

3.
Alginate polysaccharide is a promising biosorbent for metal uptake. Dry protonated calcium alginate beads for biosorption applications were prepared, briefly characterized and tested for lead uptake. Several advantages of this biosorbent are reported and discussed in comparison with other alginate-based sorbents. The alginate beads contained 4.7 mmol/g of COOH groups, which suffered hydrolysis near pH 4. The Weber and Morris model, applied to kinetic results of lead uptake, showed that intraparticle diffusion was the rate-controlling step in lead sorption by dry alginate beads. Equilibrium experiments were performed and the data were fitted with different isotherm models. The Langmuir equation was the most adequate to model lead sorption. The maximum uptake capacity (q max) was estimated as 339 mg/g and the Langmuir constant (b) as 0.84 l/mg. These values were compared with that of other sorbents found in the literature, indicating that dry protonated calcium alginate beads are among the best biosorbents for the treatment and recovery of heavy metals from aqueous streams.  相似文献   

4.
Using persulfate/ascorbic acid redox system, a series of Cassia grandis seed gum-graft-poly(methylmethacrylate) samples were synthesized. The copolymer samples were evaluated for lead(II) removal from the aqueous solutions where the sorption capacities were found proportional to the grafting extent. The conditions for the sorption were optimized using copolymer sample of highest percent grafting. The sorption was found pH and concentration dependent, pH 2.0 being the optimum value. Adsorption of lead by the grafted seed gum followed a pseudo-second-order kinetics with a rate constant of 4.64 x 10(-5) g/mg/min. The equilibrium data followed the Langmuir isotherm model with maximum sorption capacity of 126.58 mg/g. The influence of electrolytes NaCl, Na(2)SO(4) on lead uptake was also studied. Desorption with 2 N HCl could elute 76% of the lead ions from the lead-loaded copolymer. The regeneration experiments revealed that the copolymer could be successfully reused for at least four cycles though there was a successive loss in lead sorption capacity with every cycle. The adsorbent was also evaluated for Pb(II) removal from battery waste-water containing 2166 mg/L Pb(II). From 1000 times diluted waste water, 86.1% Pb(II) could be removed using 0.05 g/20 ml adsorbent dose, while 0.5 g/20 ml adsorbent dose was capable of removing 60.29% Pb from 10 times diluted waste water. Optimum Pb(II) binding under highly acidic conditions indicated that there was a significant contribution of nonelectrostatic interactions in the adsorption process. A possible mechanism for the adsorption has been discussed.  相似文献   

5.
以氯甲基化聚苯乙烯树脂(CMPS)为基质, 通过表面引发原子转移自由基聚合(SI-ATRP)反应将聚甲基丙烯酸缩水甘油酯(PGMA)接枝到树脂表面, 再与亚氨基二乙酸(IDA)反应, 制备了一种新型螯合树脂. 采用红外光谱、 元素分析及比表面积与微孔分析仪对其结构进行表征. 树脂表面甲基丙烯酸缩水甘油酯(GMA)接枝量和IDA含量及对Ni(Ⅱ), Cu(Ⅱ)和Pb(Ⅱ)的吸附容量均随聚合时间的延长而增大, 聚合时间为18 h时, 最大吸附容量分别为1.29, 1.19和0.83 mmol/g. 结果表明, SI-ATRP是制备高吸附容量及吸附容量可控的螯合树脂的可行方法.  相似文献   

6.
Enhanced and selective removal of mercury ions was achieved with chitosan beads grafted with polyacrylamide (chitosan-g-polyacrylamide) via surface-initiated atom transfer radical polymerization (ATRP). The chitosan-g-polyacrylamide beads were found to have significantly greater adsorption capacities and faster adsorption kinetics for mercury ions than the chitosan beads. At pH 4 and with initial mercury concentrations of 10-200 mg/L, the chitosan-g-polyacrylamide beads can achieve a maximum adsorption capacity of up to 322.6 mg/g (in comparison with 181.8 mg/g for the chitosan beads) and displayed a short adsorption equilibrium time of less than 60 min (compared to more than 15 h for the chitosan beads). Coadsorption experiments with both mercury and lead ions showed that the chitosan-g-polyacrylamide beads had excellent selectivity in the adsorption of mercury ions over lead ions at pH < 6, in contrast to the chitosan beads, which did not show clear selectivity for either of the two metal species. Mechanism study suggested that the enhanced mercury adsorption was due to the many amide groups grafted onto the surfaces of the beads, and the selectivity in mercury adsorption can be attributed to the ability of mercury ions to form covalent bonds with the amide. It was found that adsorbed mercury ions on the chitosan-g-polyacrylamide beads can be effectively desorbed in a perchloric acid solution, and the regenerated beads can be reused almost without any loss of adsorption capacity.  相似文献   

7.
Nateglinide loaded alginate-chitosan beads were prepared by ionic gelation method for controlling the drug release by using various combinations of chitosan and Ca2+ as cation and alginate as anion. IR spectrometry, scanning electron microscopy, differential scanning calorimetry and X-ray powder diffractometry were used to investigate the physicochemical characteristics of the drug in the bead formulations. The calcium content in beads was determined by atomic absorption spectroscopy. The swelling ability of the beads in different media (pH 1.2, 4.5, 6.8) has been found to be dependent on the presence of polyelectrolyte complex of the beads and the pH of the media. The ability to release the Nateglinide was examined as a function of chitosan and calcium chloride content in the gelation medium. It is evident that the rate of drug release and its kinetics could be controlled by changing the chitosan and the calcium chloride concentrations. Calcium alginate beads released more than 95% of drug with in 8 h; whereas coated beads sustained the drug release and released only 75-80% of drug. The drug release mechanism analyzed indicates that the release follows either "anomalous transport" or "case-II transport".  相似文献   

8.
Polysaccharide‐based thermo‐responsive material was prepared by grafting PNIPAAm onto hybrid alginate beads, in which a biomineralized polyelectrolyte layer was constructed aiming to enhance the mechanical strength and ensure higher graft efficiency. XPS results demonstrated that the incorporation of PNIPAAm to the hybrid beads was successful, and the PNIPAAm‐grafted beads were more hydrophilic than the ungrafted ones as indicated by their swelling behavior. The drug release behaviors revealed that the grafted beads were both thermo‐ and pH‐sensitive, and the PNIPAAm existed in the pores of the alginate beads acted as the “on–off” gates: the pores of the beads were covered by the stretched PNIPAAm to delay the drug release at 25°C and opened to accelerate the drug release at 37°C because of the shrinking of PNIPAAm molecules. This paper would be a useful example of grafting thermo‐responsive polymers onto biodegradable natural polymer substrate. The obtained beads provide a new mode of behavior for thermo‐responsive “smart” polysaccharide materials, which is highly attractive for targeting drug delivery system and chemical separation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
李新贵  封皓  黄美荣 《化学进展》2008,20(2):233-238
汞离子是现代工业中剧毒的污染物之一,研究者致力于汞离子高效吸附剂的研制已有多年.本文基于国内外最新研究文献,系统论述了汞离子天然吸附剂如壳聚糖、矿物、微生物及其改性材料等的吸附性能,并详细比较了各种吸附剂的优缺点,指出天然吸附剂来源广泛、价格便宜,尤其是修饰后的壳聚糖吸附性能甚至可以和一些合成吸附剂相媲美.在所报道的天然吸附剂中,引入巯基后的戊二醛交联壳聚糖,对初始浓度为500 mg/L的汞离子的吸附容量可达1 604.7mg/g,属已知的汞离子天然吸附剂中之最.天然汞离子吸附剂在工业废水处理中显示出了广阔的应用前景.  相似文献   

10.
Graft copolymerization of 2-Hydroxy ethyl methacrylate (HEMA) on to chitosan was studied using cerium (IV) as the initiator. Optimization of the grafting was worked out by varying the reaction time and monomer concentration. Under controlled conditions, up to 685% grafting with a grafting yield of 92.4% was achieved. FTIR, thermal and XRD techniques were used to confirm the formation of the grafted copolymer. Grafting caused a marginal decrease in the mechanical strength in the dry conditions and a significant decrease under wet conditions for the resultant polymer. The products showed significantly improved swelling at pH 7.4 and pH 1.98 compared to the original chitosan. Grafted polymer showed enhanced Tg and decomposition temperature. The grafting also resulted in improved hydrophilicity as is evident from the contact angle studies of the films.  相似文献   

11.
In this paper, the multiwalled carbon nanotubes (MWCNTs) were modified with chitosan (CS) by using low temperature plasma grafting technique (denoted as MWCNT-CS). The prepared MWCNTs and MWCNT-CS were characterized by SEM, TEM, FTIR and Raman spectroscopy in detail and the results suggested that CS molecules were successfully grafted on the surfaces of MWCNTs. The materials were applied as adsorbents in the removal of U(VI) ions from large volumes of aqueous solutions as a function of environmental conditions. The removal of U(VI) from aqueous solution to MWCNTs and MWCNT-CS increased with increasing pH values at pH < 7, and then decreased with increasing pH values at pH > 7. The sorption of U(VI) on MWCNTs and MWCNT-CS was strongly dependent on pH and independent of ionic strength. The sorption of U(VI) on MWCNTs and MWCNT-CS was dominated by inner-sphere surface complexation rather than by ion exchange or outer-sphere surface complexation. The surface grafted chitosan molecules can enhances U(VI) sorption on MWCNTs obviously, which was also evidenced from the XPS spectroscopy analysis. The results of high sorption capacity of U(VI) on MWCNT-CS suggest that the MWCNT-CS nanomaterial is a suitable candidate in the preconcentration of U(VI) ions from large volumes of aqueous solutions.  相似文献   

12.
The recovery of strategic metals such as rare earth elements (REEs) requires the development of new sorbents with high sorption capacities and selectivity. The bi-functionality of sorbents showed a remarkable capacity for the enhancement of binding properties. This work compares the sorption properties of magnetic chitosan (MC, prepared by dispersion of hydrothermally precipitated magnetite microparticles (synthesized through Fe(II)/Fe(III) precursors) into chitosan solution and crosslinking with glutaraldehyde) with those of the urea derivative (MC-UR) and its sulfonated derivative (MC-UR/S) for cerium (as an example of REEs). The sorbents were characterized by FTIR, TGA, elemental analysis, SEM-EDX, TEM, VSM, and titration. In a second step, the effect of pH (optimum at pH 5), the uptake kinetics (fitted by the pseudo-first-order rate equation), the sorption isotherms (modeled by the Langmuir equation) are investigated. The successive modifications of magnetic chitosan increases the maximum sorption capacity from 0.28 to 0.845 and 1.25 mmol Ce g−1 (MC, MC-UR, and MC-UR/S, respectively). The bi-functionalization strongly increases the selectivity of the sorbent for Ce(III) through multi-component equimolar solutions (especially at pH 4). The functionalization notably increases the stability at recycling (for at least 5 cycles), using 0.2 M HCl for the complete desorption of cerium from the loaded sorbent. The bi-functionalized sorbent was successfully tested for the recovery of cerium from pre-treated acidic leachates, recovered from low-grade cerium-bearing Egyptian ore.  相似文献   

13.
采用表面引发原子转移自由基聚合(SI-ATRP)方法将丙烯腈(AN) 接枝到氯甲基化聚苯乙烯树脂(PS-CH2Cl) 表面, 再与叠氮化钠进行3+2环加成反应, 制备了一种聚乙烯四唑型螯合树脂(PVT-g-PS). 用红外光谱和元素分析对PVT-g-PS树脂进行了表征, 考察了该树脂对Pb(Ⅱ), Ni(Ⅱ)和Cd(Ⅱ)的吸附性能. 在一定聚合时间范围内, 丙烯腈接枝率与SI-ATRP时间呈线性关系, 树脂表面四唑含量及树脂对金属离子的吸附容量随丙烯腈接枝率增大而增大, 说明丙烯腈在树脂表面聚合为活性可控聚合, 树脂表面功能团含量和树脂吸附容量可以用聚合时间调控. 通过分析树脂吸附容量与溶液pH值的关系、 吸附等温线和吸附动力学, 证明3种金属离子的吸附主要是基于配位作用的化学吸附. 当SI-ATRP时间为10 h时, 树脂对Pb(Ⅱ), Ni(Ⅱ)和Cd(Ⅱ)吸附容量高达1.57, 1.68和1.92 mmol/g. 经过10次吸附-解吸循环实验, 树脂的吸附容量无显著变化, 表明新型树脂具有较高的吸附量和良好的重复使用性.  相似文献   

14.
概述了近几年来本研究组在高分子材料辐照接枝制备功能性高分子材料方面的研究进展.分别以丙烯酸、顺丁烯二酸、苯乙烯接枝聚四氟乙烯纤维,制备了不同酸性的聚四氟乙烯功能纤维.以N-异丙基丙烯酰胺接枝壳聚糖制备温度及pH敏感材料,获得了性能特异的新型功能性高分子材料.报道了该类新型功能高分子材料的各种特异性能,如对金属离子优异的分离、吸附和解吸性能、超强酸性和一系列潜在用途.  相似文献   

15.
Biomineralized polysaccharide-coated alginate beads containing PNIPAAM were prepared. The resulting beads can be used as carriers for sustained pH/temperature-sensitive drug delivery. Characterizations using SEM, EDS, FTIR, and POM revealed that the beads were covered by the calcium-phosphate-mineralized alginate/chitosan membrane. The drug-release behavior was examined using indomethacin as a model drug, and the release profile of the developed materials was found to be responsive to pH and temperature. The release profile could be sustained under neutral conditions, indicating that the mineralized polysaccharide membrane could prevent the permeability of the encapsulated drug and reduce the drug release rate.  相似文献   

16.
Carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were successfully prepared by Ca2+ ions crosslinking followed by gamma irradiation. The factors affecting beads formation are the composition of SA in the blend and concentration of calcium chloride as a crosslinking agent. The results indicated that the addition of CMC to SA increases the swelling (%) upto (1:3) (CMC:SA) ratio. The effect of different irradiation doses (2.5, 5, and 10 kGy) on swelling (%) was studied. At low doses, swelling (%) decreases upto 5 kGy then starts to increase at 10 kGy. The degree of the swelling (%) and release (%) of ammonium nitrate salt from beads were investigated under different pH (1.2, 5 and 7). The beads were characterized by FTIR, SEM and TGA to investigate molecular structure, morphology and thermal stability of beads.  相似文献   

17.
Chitosan gel beads were prepared using an in‐liquid curing method by the ionotropic crosslinking with sodium tripolyphosphate. Crosslinking characteristics of the chitosan‐TPP beads were improved by the modification of in‐liquid curing mechanism of the beads in TPP solution. Chitosan gel beads cured in pH value lower than 6 were really ionic‐crosslinking controlled, whereas chitosan gel beads cured in pH values higher than 7 were coacervation‐phase inversion controlled accompanied with slightly ionic‐crosslinking dependence. According to the result, significantly increasing the ionic‐crosslinking density of chitosan beads could be achieved by transferring the pH value of the curing agent, TPP, from basic to acidic. The swelling behavior of various chitosan beads in acid appeared to depend on the ionic‐crosslinking density of the chitosan‐TPP beads that were deeply affected by the curing mechanism of the beads. The mechanism of chitosan‐TPP beads swollen in weak acid was chain‐relaxation controlled, while the mechanism of chitosan‐TPP beads swollen in strong acid seem to be not only chain‐relaxation but also chain‐scission controlled. Chitosan‐TPP beads prepared in acidic TPP solution decreased the chain‐scission ability due to the increase of ionic crosslinking density of the beads. By the transition of curing mechanism, the swelling degree of chitosan‐TPP beads was depressed, and the disintegration of chitosan‐TPP beads would not occur in strong acid. The mechanism of ionic‐crosslinking reaction of chitosan beads could be investigated by an unreacted core model, and the curing mechanism of the chitosan beads is mainly diffusion controlled when higher than 5% of chitosan was employed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1551–1564, 1999  相似文献   

18.
Biopolymers such as alginates are commonly used to remove the cationic contaminants from wastewaters. The major component of the alginate is the alginic acid, a linear, binary heteropolymer of β-d-mannuronate and -l-guluronate residues. In this study the fundamental aspects in the preparation of alginate beads and the effects of salt, sodium alginate concentrations and two cationic surfactants (dodecyltrimethylammonium bromide, cetyltrimethylammonium bromide) on the domains of binding isotherms were investigated. The alginate cross-link complexes with metal ions can exist either as homogeneous clear solutions or precipitates or as spherical beads. The applicability of the calcium and calcium–iron alginate gel beads for removal of some nitrophenols from aqueous solutions was studied. The sorption and kinetic experiments were conducted under different values of pH, initial concentration of nitrophenols and the amount of alginate gel beads. The removal efficiency of contaminant increases with the increasing of the pH and the quantity of alginate beads and decreases with the increasing of initial contaminant concentration. The uptake of nitrophenols occurs rapidly in the first 12 h, followed by a slow process that takes about 72 h. According to the egg-box model of gelation mechanism the cavities formed in the alginate gel capture the cationic contaminants. The adsorption equilibrium data obtained for nitrophenols derivatives at various pH and initial solid sorbent amount were applied to the two classical models, i.e. Langmuir and Freundlich, and the isotherm parameters were calculated.  相似文献   

19.
The adsorption of Pb(II) ions from aqueous solutions by chitosan flakes and beads was studied. The chitosan beads were prepared by casting an acidic chitosan solution into alkaline solution. Experiments were carried out as a function of pH, agitation period and initial concentration of Pb2+ ions. The uptake of Pb2+ ions from aqueous solution was determined from changes in concentration as measured by atomic absorption spectroscopy. The maximum uptake of Pb2+ ions on chitosan beads was greater than that on chitosan flakes. Adsorption isothermal data could be interpreted by the Langmuir equation. The experimental data of the adsorption equilibrium from Pb2+ ion solutions correlated well with the Langmuir isotherm equation. SEM analyses were also conducted for visual examination of the chitosan flakes and beads. Physical properties including surface area and average pore diameter were characterized by N2 adsorption experiment.  相似文献   

20.
壳聚糖-g-聚甲基丙烯酸凝胶粒的制备及其药物释放行为   总被引:1,自引:1,他引:0  
以壳聚糖和甲基丙烯酸为原料,硝酸铈铵为引发剂,合成了不同接枝率的壳聚糖-g-聚甲基丙烯酸(CS-g-PMAA),用FTIR、1H NMR和元素分析表征了产物的结构,以柠檬酸三钠和戊二醛为交联剂制备了具有核壳结构的CS-g-PMAA载药体系。 用UV/Vis检测了CS-g-PMAA粒子对模型药物的释放行为。 结果表明,CS-g-PMAA接枝率为12.21%时药物释放速率最慢,其在pH=1.8介质中药物累积释放量(11 h)为44.18%,而壳聚糖粒子的累积释放量高达65.24%,即接枝改性壳聚糖粒子对药物的缓慢控制释放性能较好; CS-g-PMAA粒子的释药行为还依赖于介质的pH值和盐浓度,在低pH值和低盐浓度下,药物释放速率较快;酶环境下由于载体材料的降解使药物释放速率加快。 分析了不同条件下CS-g-PMAA载药粒子中药物的释放机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号