首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A simple and sensitive platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene)nanocomposite(PtNPs/PEDOT-MeOH) modified glassy carbon electrode(GCE) was successfully developed for the electrochemical determination of quercetin.Scanning electron microscopy and energy dispersive X-ray spectroscopy results indicated that the PtNPs were inserted into the PEDOTMeOH layer.Compared with the bare GCE and poly(3,4-ethylenedioxythiophene)(PEDOT) electrodes,the PtNPs/PEDOT-MeOH/GCE modified electrode exhibited a higher electrocatalytic ability toward the oxidation of quercetin due to the synergic effects of the electrocatalytic activity and strong adsorption ability of PtNPs together with the good water solubility and high conductivity of PEDOT-MeOH.The electrochemical sensor can be applied to the quantification of quercetin with a linear range covering0.04-91 μmol L~(-1) and a low detection limit of 5.2 nmol L~(-1).Furthermore,the modified electrode also exhibited good reproducibility and long-term stability,as well as high selectivity.  相似文献   

2.
A novel electrochemical sensor was fabricated by electrodeposition of gold nanoparticles on a poly(L-methionine)(PMT)-modified glassy carbon electrode(GCE) to form a nano-Au/PMT composite-modified GCE(nano-Au/PMT/GCE).Scanning electron microscopy and electrochemical techniques were used to characterize the composite electrode.The modified electrode exhibited considerable electrocatalytic activity towards the oxidation of dopamine(DA) and uric acid(UA) in phosphate buffer solution(pH = 7.00).Differential pulse voltammetry revealed that the electrocatalytic oxidation currents of DA and UA were linearly related to concentration over the range of 5.0 ×10–8 to 10–6 mol/L for DA and 7.0 × 10–8 to 10–6 mol/L for UA.The detection limits were 3.7 × 10–8mol/L for DA and 4.5 × 10–8 mol/L for UA at a signal-to-noise ratio of 3.According to our experimental results,nano-Au/PMT/GCE can be used as a sensitive and selective sensor for simultaneous determination of DA and UA.  相似文献   

3.
The fabrication of poly(2,6-pyridinedicarboxylic acid)/MWNTs modified glass electrode(PPDA/MWNTs/GCE) was proposed and used for individual or simultaneous determination of guanine and adenine.The performances of the PPDA/MWNTs/GCE were characterized with cyclic voltammetry(CV).The modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine.Differential pulse voltammetry(DPV) was used to determine the concentration of guanine,adenine.The detection limit(S/N = 3) for guanine and adenine was 0.045μmol/L and 0.05μmol/L,respectively.The electrochemical method for the measurement of guanine and adenine in calf thymus DNA was also developed with this modified electrode and the result was satisfactory.  相似文献   

4.
A hybrid membrane consisted of aminated graphene and Ag nanoparticles(Ag NPs) was prepared on the surface of glassy carbon electrode(GCE) by cyclic voltammetry(CV) with aminated graphene(GR-NH2) as matrix for immobilizing Ag NPs.The morphology and electrochemical properties of this hybrid membrane were characterized by scanning electron microscopy(SEM) and CV,respectively,and on this membrane,the voltammetric behaviors of epinephrine(EP) were studied in detail.The membrane exhibited excellent eletro-catalytic activities for the redox of EP,and could resolve the electrochemical response of EP and uric acid(UA) into two oxidation peaks.The peak current of EP was linear with its concentration in the ranges of 0.916-18.3 μmol/L and 18.3-184 μmol/L.The detection limit was 2.0 nmol/L(S/N=3).The proposed modified electrode retained the advantages of easy fabrication,high sensitivity and good repeatability for the determination of EP.  相似文献   

5.
A simple and sensitive electroanalytical method for determination of shikonin,a widely used antitumoral agent,using β-cyclodextrin-functionalized multiwalled carbon nanotubes composite modified glassy carbon electrodes(MWCNTs/β-CD/GCE) was presented.CDs are water-soluble and environmentally friendly and can improve the dispersibility of MWCNTs/β-CD functional materials,which was confirmed by SEM.The electrochemical behaviors of shikonin on different electrodes were investigated by cyclic voltammetry(CV) and differential pulse voltammograms(DPVs).The results demonstrated that the redox peak currents of shikonin obtained at MWCNTs/β-CD/GCE were much higher than those at theβ-CD/GCE and MWCNTs/GCE,which can be attributed to the combination of the excellent electrocatalytic properties of MWCNTs and the molecular recognition ability of β-CD.At MWCNTs/β-CD/GCE,the response current exhibits a linear range from 5.0 nmol/L to 10.0 μmol/L with a detection limit of 1.0 nmol/L(S/N = 3).As a practical application,the proposed method was applied to quantitatively determine shikoninin urine samples with satisfying results.  相似文献   

6.
A carbon paste electrode that was chemically modified with multiwall carbon nanotubes and p-aminophenol was used as a selective electrochemical sensor for the simultaneous detection of hydroxylamine (HX) and phenol. Cyclic voltammetry, double potential-step chronoamperometry, square wave voltammetry (SWV), and electrochemical impedance spectroscopy were used to investigate the use of p-aminophenol in the carbon nanotubes paste matrixes as a mediator for the electrocatalytic oxidation of HX and phenol in aqueous solution. The coefficient of electron transfer and catalytic reaction rate constant were determined using the electrochemical methods. Under optimized conditions, the electrocatalytic oxidation current peaks for HX and phenol increased linearly with concentration in the range of 0.5-180.0 and 10.0-650.0 μmol/L for HX and phenol, respectively. The detection limits for HX and phenol were 0.15 and 7.1 μmol/L, respectively. The anodic potential peaks of HX and phenol were separated by 0.65 V in SWV. Because of good selectivity and sensitivity, the present method provides a simple method for the selective detection of HX and phenol in practical samples such as water samples.  相似文献   

7.
Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by the electrochemical reduction of the Ag+.The presence of the calixarene layer on the electrode surface controlled the particle size and prevented agglomeration.Cyclic voltam‐metry showed that the Ag nanoparticles on the modified glassy carbon electrode had good catalytic ability for the reduction of flutamide.The effects of calixarene concentration,potential applied for the reduction of Ag+,number of calixarene layers,and p H value on the electrocatalytic activity of the Ag nanoparticles were investigated.The modified electrode had a linear range in differential pulse voltammetry of 10-1000 μmol/L with a detection limit of 9.33 μmol/L for flutamide at an S/N = 3.The method was applied to the detection of flutamide in practical samples.  相似文献   

8.
A chemically modified carbon paste electrode (CPE), consisting of 2,2'-[ (1E)- (1,2- phenylenebis (azanylylidene)] bis (methanylylidene)]bis (benzene-1,4-diol) (PBD) and multiwalled carbon nano-tubes (CNTs), was used to study the electrocatalytic oxidation of dopamine using cyclic voltamme-try, chronoamperometry, and differential pulse voltammetry (DPV). First, the electrochemical be-havior of the modified electrode was investigated in buffer solution. Then the diffusion coefficient, electrocatalytic rate constant, and electron-transfer coefficient for dopamine oxidation at the sur-face of the PBD-modified CNT paste electrode were determined using electrochemical approaches. It was found that under optimum conditions (pH = 7.0), the oxidation of dopamine at the surface of such an electrode occurred at about 200 mV, lower than that of an unmodified CPE. DPV of dopa-mine at the modified electrode exhibited two linear dynamic ranges, with a detection limit of 1.0 μmol/L. Finally, DPV was used successfully for the simultaneous determination of dopamine, uric acid, and folic acid at the modified electrode, and detection limits of 1.0, 1.2, and 2.7 μmol/L were obtained for dopamine, uric acid, and folic acid, respectively. This method was also used for the determination of dopamine in a pharmaceutical preparation using the standard addition method.  相似文献   

9.
A simple,sensitive,and reliable method for the voltammetric determination of bisphenol A(BPA) by using carboxylic group functionalized single-walled carbon nanotubes(f-SWCNT)/carboxylic-functionalized poly(3,4-ethylenedioxythiophene)(PC4) complex modified glassy carbon electrode(GCE) has been successfully developed.The electrochemical behavior of BPA at the surface of the modified electrode is investigated by electrochemical techniques.The cyclic voltammetry results show that the as-prepared electrode exhibits strong catalytic activity toward the oxidation of BPA with a well-defined anodic peak at 0.623 V in PBS(0.1 mol/L,pH 7.0).The surface morphology of the 3D network of composite film is beneficial for the adsorption of analytes.Under the optimized conditions,the oxidation peak current is proportional to BPA concentration in the range between 0.099 and 5.794 μmol/L(R~2 = 0.9989),with a limit of detection of 0.032 μmol/L(S/N = 3).The enhanced performance of the sensor can be attributed to the excellent electrocatalytic property of/-SWCNT and the extraordinary conductivity of PC4.Furthermore,the proposed modified electrode displays high stability and good reproducibility.The good result on the voltammetric determination of BPA also indicates that the asfabricated modified electrode will be a good candidate for the electrochemical determination and analysis of BPA.  相似文献   

10.
The application of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10–4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.  相似文献   

11.
Pd-capped Mg_(78)Y_(22) thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to ~1725 mAh·g~(-1).Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.  相似文献   

12.
To prepare a high-performance epoxy resin with excellent thermal, chemical and corrosion stability, diaminoxanthone(DAX) was used to cure diglycidylether of bisphenol-A(DGEBA)-based epoxy resin and blend of DGEBA with functionalized Fe3O4 nanoparticles. Kinetic parameters of curing and thermal degradation of epoxy resin systems were estimated by differential scanning calorimetry(DSC) and thermogravimetric analysis(TGA), respectively. The 10% weight loss temperature has been increased from 340 °C to 366 °C and there was an increase in the char yield from 32.6% to 45.3% for the above systems. The corrosion performance of epoxy coated carbon steel was examined by potentiodynamic polarization, along with immersion test in 1.0 mol/L HCl solution. The results showed that epoxy resins cured with DAX had low tendency to corrosion. In addition, the cured epoxy resin containing 10% Fe3O4 had higher anticorrosion activity than bare DGEBA system. The results showed that functionalized Fe3O4 nanoparticles enhanced char formation and improved the thermal stability as well as anticorrosion activity of the resin.  相似文献   

13.
TiO_2 nanocrystals/graphene hybrids(TiO_2-G) with ultrafine TiO_2 nanocrystals(~7 nm in size) conformally coated on ultrathin graphene nanosheets(~ 2 layers thick) were successfully prepared via a facile one-pot solvothermal route under mediated conditions.With the feature of large surface area,abundant mesopores and high thermal stability,the TiOi-G nanohybrids exhibited large reversible Li-ion storage capacity with excellent cycling stability(629 mAh·g~(-1) after 400 cycles at a current of 60 mA·g~(-1)) and good rate capability(184 mAh·g~(-1) at a current density of 3 A·g~(-1)) due to the synergetic effects and strong interactions between the components,showing great promise in applications for advanced energy storage devices.  相似文献   

14.
程博闻 《高分子科学》2014,32(7):923-930
The effect of reverse pressure.on rheological behavior has been studied. The apparatus is a capillary rheometer with counter pressure chamber being held at a high reverse pressure by means of a cock. The results show that with the increase in temperature, the shear viscosity of hydrophilic PET is reduced. It is different that the effect of temperature on shear viscosity is varied under the condition of all shear rates or all pressures, and the effect is more prominent at 50 MPa or at 216 s-1. At the same time, the pressure coefficients decrease with increasing the shear rate and the temperature and tend to reach a constant value nearly at the temperature of 290 °C.  相似文献   

15.
SBA-15 supported Mo catalysts (Moy/SBA-15) were prepared by an ultrasonic assisted incipient-wetness impregnation method. The physical and chemical properties of the catalysts were characterized by means of N2-adsorption-desorption, XRD, TEM, UV-Vis, Raman, XANES and H2-TPR. The results showed that a trace amount of MoO3 was produced on high Mo content samples. Tum-over frequency (TOF) and product selectivity are dependent on the molybdenum content. Both Mo0.75/SBA-15 and Mo1.75/SBA-15 catalysts give the higher catalytic activity and the selectivity to the total aldehydes for the selective oxidation of C2H6. At the reaction temperature of 625℃, the maximum yield of aldehydes reached 4.2% over Mo0.75/SBA-15 catalyst. The improvement of the activity and selectivity was related with the state of MoOx species.  相似文献   

16.
Three series of CeO2/CuO samples were prepared by impregnation method and characterized by XRD, N2adsorption-desorption, temperatureprogrammed reduction(TPR), XPS and TEM techniques. In comparison with the samples prepared with CuO as initial support, the samples with Cu(OH)2as initial support have higher reducibilities and smaller relative TPR peak areas, and also larger specific surface areas at calcination temperatures of 400℃–600℃. As a result, Cu(OH)2is better than CuO as initial support for preferential oxidation of CO in excess H2(CO-PROX). The best catalytic performance was achieved on the sample calcined at 600℃ and with an atomic ratio of Ce/Cu at 40%. XPS analyses indicate that more interface linkages Ce-O-Cu could be formed when it was calcined at 600℃. And the atomic ratio of Ce/Cu at 40%led to a proper reducibility for the sample as illustrated by the TPR measurements.  相似文献   

17.
Carbon dioxide transformation to fuels or chemicals provides an attractive approach for its utilization as feedstock and its emission reduction. Herein, we report a gas-phase electrocatalytic reduction of CO2 in an electrolytic cell, constructed using phosphoric acid-doped polybenz- imidazole (PBI) membrane, which allowed operation at 170 ℃ Pt/C and PtMo/C with variable ratio of Pt/Mo were studied as the cathode catalysts. The results showed that PtMo/C catalysts significantly enhanced CO formation and inhibited CH4 formation compared with Pt/C catalyst. Characterization by X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy revealed that most Mo species existed as MoO3 in PtMo/C catalysts and the interaction between Pt and MoOx was likely responsible for the enhanced CO formation rate although these bicomponent catalysts in general had a larger particle size than Pt/C catalyst.  相似文献   

18.
Lithium-sulfur(Li-S) batteries belong to one of the promising technologies for high-energy-density rechargeable batteries.However,sulfur cathodes suffer from inherent problems of its poor electronic conductivity and the shuttling of highly dissoluble lithium polysulfides generated during the cycles.Loading sulfur into porous carbons has been proved to be an effective approach to alleviate these issues.Mesoporous and microporous carbons have been widely used for sulfur accommodation,but mesoporous carbons have poor sulfur confinement,whereas microporous carbons are impeded by low sulfur loading rates.Here,a core-shell carbon,combining both the merits of mesoporous carbon with large pore volume and microporous carbon with effective sulfur confinement,was prepared by coating the mesoporous CMK-3 with a microporous carbon(MPC) shell and served as the carbon host(CMK-3 @MPC) to accommodate sulfur.After sulfur infusion,the as-obtained S/(CMK-3@MPC) cathode delivered a high initial capacity of up to 1422 mAh·g~(-1) and sustained 654 mAh·g~(-1) reversible specific capacity after 36 cycles at 0.1 C.The good performance is ascribed to the unique core-shell structure of the CMK-3@MPC matrix,in which sulfur can be effectively confined within the meso/microporous carbon host,thus achieving simultaneously high electrochemical utilization.  相似文献   

19.
《天然气化学杂志》2014,(6):801-808
A CO3O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation (MEO) has been fabricated by the combination of hydrother- mal synthesis and microwave-assisted polyol reduction processes. The crystallographic property and microstructure have been characterized using XRD, SEM and TEM. The results demonstrate that Pd nanoparticles (PdNPs) with a narrow particle size distribution (3-5 nm) are uni- formly deposited onto the surface of Co304 nanorods. Electrochemical measurements show that this catalyst having a larger electrochemically active surface area and a more negative onset-potential exhibits enhanced catalytic activity of 504 mA/mg Pd for MEO comparing with the Pd/C catalyst (448 mA/mg Pd). The dependency of log/against logv reveals that MEO on Pd-CO304 electrode is under a diffusion control. Electrochemical impedance spectroscopy (EIS) measurement agrees well with the CV results. The minimum charge transfer resistance of MEO on Pd-CO304 is observed at -0.05 V, which coincides with the potential of MEO peak.  相似文献   

20.
Three types of carbon nano-onions(CNOs) including Ni@CNOs.Fe_3C@CNOs and Fe_(0.64)Ni_(0.36)@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850 ℃ using nickel,iron and iron-nickel alloy catalysts.Comparative and systematic studies have been carried out on the morphology,structural characteristics and graphitic crystallinity of these CNOs products.Furthermore,the electrochemical hydrogen storage properties of three types of CNOs have been investigated.Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g,coiTesponding to a hydrogen storage of 1.42%.This comparison study shows the advantages of each catalyst in the growth of CNOs.enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号