首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we use the tight-binding model to study the low-energy electronic properties of telescoping double-walled carbon nanotubes subject to the influences of a transverse electric field and a parallel magnetic field. The state energy and energy spacings are found to oscillate significantly with the overlapping length. External fields would modify the state energies, alter the energy gaps, and destroy the state degeneracy. Complete energy gap modulations can be accomplished either by varying the overlapping length, or by applying an electric field or a magnetic field. The variations of state energies with the external fields will be directly reflected in the density of states. The numbers, heights, and frequencies of the density of states peaks are strongly dependent on the external fields.  相似文献   

2.
本文采用超越平均场模型研究了缺中子Ba同位素链114-124Ba的八极形变及其演化规律。计算了Ba链的位能曲面、低能激发谱、电四极跃迁几率、电八极跃迁几率及集体波函数的几率密度分布,并与实验相比较。理论计算较好地再现了Ba核的低能激发结构。位能曲面、低能的负宇称带、较大的B(E3;31- → 01+)和展宽的几率密度分布表明,114Ba中存在较强的八极关联。116,118Ba具有过渡核特征,而120-124Ba则为典型的四极形变原子核。  相似文献   

3.
In this work, we use the tight-binding model to study the low-energy electronic properties of zero-dimensional finite-sized nanographene subject to the influence of an electric field. State energies and energy spacings are found to oscillate significantly with the field strength. The state energies and band gaps also rely upon the type of the nanographene. The electric field will modify state energies, alter energy gaps, and induce the complete energy gap modulations. The band gap of the type-IV nanographene is always zero regardless of the value of the field strength. The variations of the state energies will be directly reflected in the density of states. The numbers and frequencies of the density of states’ divergent peaks are strongly dependent on the field strength and the type of the nanographene. Finally, the electron wave functions are found to be localized at certain zigzag lines at zero electric field.  相似文献   

4.
T.S. Li  M.F. Lin  J.Y. Wu 《哲学杂志》2013,93(11):1557-1567
In this work, we use the tight-binding model to study the low-energy electronic properties of carbon nanoscrolls subject to the influences of a transverse electric field. A carbon nanoscroll can be considered as an open-ended spirally wrapped graphene nanoribbon. The inter-wall interactions will alter the subband curvature, create additional band-edge states, modify the subband spacing or energy gap, and separate the partial flat bands. Furthermore, the energy band symmetry about the Fermi level is lifted by such interactions. The truncated Archimedean spiral ρ?=?r a θ?+r is used to describe the spiral structures of carbon nanoscrolls. The energy gap is found to oscillate significantly with r, and exhibits complete energy gap modulations. With the inclusion of a transverse electric field, the band structures are further altered. Inter-wall hoppings will cause electron transfers between different atoms leading to distortions of the electron wavefunctions. The main features of the energy dispersions are directly reflected in the density of states. The numbers, heights, and energies of the density of states peaks are dependent on the electric field strength.  相似文献   

5.
里德堡电子与基态原子的低能电子散射形成长程里德堡分子,这种分子具有大的轨道半径,丰富的振动能级和永久电偶极矩等特点。本文考虑铯里德堡ns态与(n-4)l(n为主量子数,l为角量子数且l2)近简并态的非绝热耦合与p-波共振现象,数值计算了长程铯里德堡分子的势能曲线。分析ns6s(n=32-36)态分子最外层势阱,研究了长程里德堡分子的势阱深度、平衡距离与主量子数n的关系,为实验研究长程里德堡分子提供理论依据。  相似文献   

6.
7.
Conversion of two diametrically opposed atomic rows on a carbon nanotube to sp(3) hybridization produces two identical weakly coupled one-dimensional electronic systems within a single robust covalently bonded package: a biribbon. Arm-chair tubes, when so divided, acquire a pair of narrow spin-polarized bands at the Fermi energy; interaction across the sp(3) dividers produces a tunable band splitting in the THz range. For semiconducting tubes, the eigenvalues of the low-energy electronic states are surprisingly unaffected by the bifurcation; however, the tubes' response functions to external electric fields are dramatically altered. These modified tubes could be produced by uniaxial compression transverse to the tube axis followed by site-selective chemisorption.  相似文献   

8.
We have systematically measured the electroreflectance spectra of a GaAs (7.0 nm)/Al0.1Ga0.9As (3.5 nm) superlattice at various electric fields to investigate Franz–Keldysh (FK) oscillations. In the low-field regime, we clearly observe the FK oscillations toward the low-energy side of theM1critical point (mini-Brillouin-zone edge). As the electric field is increased, the direction of the FK oscillations is reversed, then the oscillations disappear. The change of the oscillation direction correlates with the transformation of the electronic structures from the miniband to the Stark-ladder states in the Wannier-Stark localization. We discuss these experimental results on the basis of a theory of the FK oscillations and envelope-function forms calculated by a transfer matrix method with Airy functions.  相似文献   

9.
We consider a method for optimizing the tunnel effect for low-energy particles by using coherent correlated states formed under controllable pulsed action on these particles. Typical examples of such actions are the effect of a pulsed magnetic field on charged particles in a gas or plasma. Coherent correlated states are characterized most comprehensively by the correlation coefficient r(t); an increase of this factor elevates the probability of particle tunneling through a high potential barrier by several orders of magnitude without an appreciable increase in their energy. It is shown for the first time that the formation of coherent correlated states, as well as maximal |r(t)|max and time-averaged 〈|r(t)|〉 amplitudes of the correlation coefficient and the corresponding tunneling probability are characterized by a nonmonotonic (oscillating) dependence on the forming pulse duration and amplitude. This result makes it possible to optimize experiments on the realization of low-energy nuclear fusion and demonstrates the incorrectness of the intuitive idea that the tunneling probability always increases with the amplitude of an external action on a particle. Our conclusions can be used, in particular, for explaining random (unpredictable and low-repeatability) experimental results on optimization of energy release from nuclear reactions occurring under a pulsed action with fluctuations of the amplitude and duration. We also consider physical premises for the observed dependences and obtain optimal relations between the aforementioned parameters, which ensure the formation of an optimal coherent correlated state and optimal low-energy tunneling in various physical systems with allowance for the dephasing action of a random force. The results of theoretical analysis are compared with the data of successful experiments on the generation of neutrons and alpha particles in an electric discharge in air and gaseous deuterium.  相似文献   

10.
Based on a variational approach, we propose that there are two kinds of low-energy states in the t-J-type models at low doping. In a quasiparticle state an unpaired spin bound to a hole with a well-defined momentum can be excited with spin waves. The resulting state shows a suppression of antiferromagnetic order around the hole with the profile of a spin bag. These spin-bag states with spin and charge or hole separated form a continuum of low-energy excitations. Very different properties predicted by these two kinds of states explain a number of anomalous results observed in the exact diagonalization studies on small clusters up to 32 sites.  相似文献   

11.
Low-temperature photoluminescence of GaAs has been investigated in MBE-grown Al x Ga1–x As-GaAs single heterojunctions subject to an electric field. No peak energy shift is observed in the emission lines due to free excitons and excitons bound to isolated centers when the electric field is applied. In contrast, the excitonic lines arising from the previously described defect-induced bound exciton (DIBX) transitions exhibit a prominent low-energy shift when the electric field is increased. We attribute these lines to excitons bound to acceptor pairs. The excitons bound to distant pairs have smaller binding energies than those bound to closer pairs. They are, therefore, easily dissociated in a weak electric field. The electrons and holes thus dissociated may again be trapped by closer pairs, which results in a low-energy shift of the overall spectrum. The photocurrent measured as a function of the electric field supports Dingle's rule for the valence bandedge discontinuity.  相似文献   

12.
We study the overlap between low-energy states in lattice models of heteropolymers with contact interactions. The overlap distribution gives information on the degree of correlation in the energy landscape. Designed sequences have rather correlated energy landscapes, which favor fast folding kinetics. Chains with random interactions have much less correlated energy landscapes. It is indeed believed that the mean-field theory for this model coincides with the Random Energy Model, whose different low-energy states are completely unrelated. This picture has been supported by numerical studies of maximally compact configurations. Without applying this constraint, we find that the overlap distribution is indeed bimodal as expected, but it has a broad peak at large overlap, indicating a non-vanishing width for the valleys of low-energy states. This feature probably plays an important role in the kinetics of the model. It is not evident that the range of such correlations shrinks to zero for large systems. The range of the correlations seems to be influenced by the number of contacts per residue in the ground state: the smaller this quantity, the larger the correlations. Received 16 August 2000  相似文献   

13.
A σ-model with two linked Mexican hats is discussed. This scenario could be realized in low-energy QCD when the ground state and the first excited (pseudo)scalar mesons are included, and where not only in the subspace of the ground states, but also in that of the first excited states, a Mexican hat potential is present. This possibility can change some basic features of a low-energy hadronic theory of QCD. It is also shown that spontaneous breaking of parity can occur in the vacuum for some parameter choice of the model.  相似文献   

14.
15.
Anisotropy of high-energy spin excitations and low-energy conductive electronic excitations in Raman spectra can be interpreted, if quantum spin fluctuation is weak. The low-energy states at (π/2, π/2) in the underdoped phase are composed of insulating states induced by the insulator-metal transition and the conductive states induced by electron-phonon coupling. The superconducting states are created in the latter states and the pairing symmetry is s or d(xy). On the other hand, the electronic states at (π, 0) in the overdoped phase are electron-spin coupled states and the pairing symmetry is d(x2y2).  相似文献   

16.
Because of the spin and Dirac-valley degrees of freedom, graphene allows the observation of one-, two- or four-component fractional quantum Hall effects in different parameter regions. We address the stability of various states in the SU(2) and SU(4) limits. In the SU(4) limit, we predict that new low-energy Goldstone modes determine the stability of the fractional quantum Hall states at 2/5, 3/7, etc; SU(4) skyrmions are not found to be relevant for the low-energy physics. These results are discussed in light of experiments.  相似文献   

17.
闫世杰  刘玲  王建国 《计算物理》2009,26(2):254-260
应用双中心原子轨道强耦合方法研究He2+-H-碰撞的单次电荷转移过程.计算中,对入射粒子He2+,包含n=1~7的所有束缚态,计算的能量本征值与NIST标准数据在百分之几的精度内符合很好;对靶H-,包括一个束缚态1s和五个连续态ns(n=2~6),束缚态能量与他人理论结果一致.在4~400 keV的入射粒子能量范围,计算单电子俘获过程的总截面及到各个壳层上的态选择截面.发现在较低的入射粒子能量,电子主要俘获到He+离子主量子数n=3~5的壳层,高能区俘获到n=2的壳层为主;对同一主量子数n,在低能区俘获到高角动量态(l=n-1,n-2)的电荷转移截面相对较大,在高能区主要俘获到l=1的p壳层.同时还计算入射粒子能量分别为4 keV和400 keV时,电子俘获到激发态辐射退激发产生的电荷转移发射光谱,并发现cascade效应的影响很大.  相似文献   

18.
Ningjing Yang 《中国物理 B》2023,32(1):17201-017201
Biphenylene is a new topological material that has attracted much attention recently. By amplifying its size of unit cell, we construct a series of planar structures as homogeneous carbon allotropes in the form of polyphenylene networks. We first use the low-energy effective model to prove the topological three periodicity for these allotropes. Then, through first-principles calculations, we show that the topological phase has the Dirac point. As the size of per unit cell increases, the influence of the quaternary rings decreases, leading to a reduction in the anisotropy of the system, and the Dirac cone undergoes a transition from type II to type I. We confirm that there are two kinds of non-trivial topological phases with gapless and gapped bulk dispersion. Furthermore, we add a built-in electric field to the gapless system by doping with B and N atoms, which opens a gap for the bulk dispersion. Finally, by manipulating the built-in electric field, the dispersion relations of the edge modes will be transformed into a linear type. These findings provide a hopeful approach for designing the topological carbon-based materials with controllable properties of edge states.  相似文献   

19.
We describe a new class of nanoscale structured metals wherein the effects of quantum confinement are combined with dispersive metallic electronic states to induce modifications to the fundamental low-energy microscopic properties of a three-dimensional metal: the density of states, the distribution of Fermi velocities, and the collective electronic response.  相似文献   

20.
We find a one-to-one mapping between low-energy string dilaton states in AdS bulk and high-energy glueball states on the corresponding boundary. This holographic mapping leads to a relation between bulk and boundary scattering amplitudes. From this relation and the dilaton action we find the appropriate momentum scaling for high-energy QCD amplitudes at fixed angles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号