首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two phase mixture model is used to numerically simulate the turbulent forced convection of Al2O3-Water nanofluid in a channel with corrugated wall under constant heat flux. Both mixture and single phase models are implemented to study the nanofluid flow in such a geometry and the results have been compared. The effects of the volume fraction of nanoparticles, Reynolds number and amplitude of the wavy wall on the rate of heat transfer are investigated. The results showed that with increasing the volume fraction of nanoparticles, Reynolds number and amplitude of wall waves, the rate of heat transfer increases. Also the results showed that the mixture model yields to higher Nusselt numbers than the single phase model in a similar case.  相似文献   

2.
The periodically fully developed laminar heat transfer and fluid flow characteristics inside a two-dimensional wavy channel in a compact heat exchanger have been numerically investigated. Calculations were performed for Prandtl number 0.7, and Reynolds number ranging from 100 to 1,100 on non-orthogonal non-staggered grid systems, based on SIMPLER algorithm in the curvilinear body-fitted coordinates. Effects of wavy heights, lengths, wavy pitches and channel widths on fluid flow and heat transfer were studied. The results show that overall Nusselt numbers and friction factors increase with the increase of Reynolds numbers. According to the local Nusselt number distribution along channel wall, the heat transfer may be greatly enhanced due to the wavy characteristics. In the geometries parameters considered, friction factors and overall Nusselt number always increase with the increase of wavy heights or channel widths, and with the decrease of wavy lengths or wavy pitches. Especially the overall Nusselt number significantly increase with the increase of wavy heights or channel widths, where the flow may become into transition regime with a penalty of strongly increasing in pressure drop. An erratum to this article can be found at  相似文献   

3.
The mechanism of peristaltic magnetohydrodynamic (MHD) flow based on slip and heat transfer effects is studied in an asymmetric channel. An incompressible viscous fluid fills the porous space inside the channel. Long wavelength and zero Reynolds number approximation are used in the flow modeling. Expressions of stream function, longitudinal pressure gradient, and temperature are developed. Various interesting phenomena associated with peristalsis, such as pumping and trapping, are discussed in detail. Further the effects of various pertinent parameters on temperature field and heat transfer coefficient are explained with the help of graphs and tables. It is found that pressure rise over one wavelength decreases in pumping region for large values of slip parameter. Similar behavior is observed for temperature field by increasing the slip parameter. However, the volume of trapped bolus decreases by increasing the slip parameter. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
A numerical study is presented for the laminar fully developed flow and heat transfer in a two-dimensional wavy channel. The effects of the geometry, Reynolds and Prandtl number on the flow field and heat transfer are investigated. The channel is characterized by a wavy wall, heated at uniform heat flux, and an opposite wall, being plane and adiabatic. The extent of the wall waviness and the distance between the channel walls are found to significantly affect the streamlines contours as well as the heat transfer coefficients. Comparisons with the straight channel, in the same flow rate and heat transfer conditions, have been performed. Pressure drop of the wavy channel is found to be always larger than the value characteristic of a straight channel, while heat transfer performance decreases or increases depending on the values of the parameters (geometry, Reynolds and Prandtl numbers).  相似文献   

5.
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25–2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500–4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.  相似文献   

6.
An experimental investigation was performed to obtain the flow and heat transfer characteristics of single-phase water flow and two-phase pipe boiling water flow under high gravity (Hi-G) in present work. The experiments were conducted on a rotating platform, and boiling two-phase flow state was obtained by means of electric heating. The data were collected specifically in the test section, which was a lucite pipe with inner diameter of 20 mm and length of 400 mm. By changing the parameters, such as rotation speed, inlet temperature, flow rate, and etc., and analyzing the fluid resistance, effective heat and heat transfer coefficient of the experimental data, the effects of dynamic load on the flow and heat transfer characteristics of single phase water and two-phase boiling water flow were investigated and obtained. The two-phase flow patterns under Hi-G condition were obtained with a video camera. The results show that the dynamic load significantly influences the flow characteristic and boiling heat transfer of the two-phase pipe flow. As the direction of the dynamic load and the flow direction are opposite, the greater the dynamic load, the higher the outlet pressure and the flow resistance, and the lower the flow rate, the void fraction, the wall inner surface temperature and the heat transfer capability. Therefore, the dynamic load will block the fluid flow, enhance heat dissipation toward the ambient environment and reduce the heat transfer to the two-phase boiling flow.  相似文献   

7.
The heat transfer and fluid flow behavior of water based Al2O3 nanofluids are numerically investigated inside a two-sided lid-driven differentially heated rectangular cavity. Physical properties which have major effects on the heat transfer of nanofluids such as viscosity and thermal conductivity are experimentally investigated and correlated and subsequently used as input data in the numerical simulation. Transport equations are numerically solved with finite volume approach using SIMPLEC algorithm. It was found that not only the thermal conductivity but also the viscosity of nanofluids has a key role in the heat transfer of nanofluids. The results show that at low Reynolds number, increasing the volume fraction of nanoparticles increases the viscosity and has a deteriorating effect on the heat transfer of nanofluids. At high Reynolds number, the increase in the viscosity is compensated by force convection and the increase in the volume fraction of nanoparticles which results in an increase in heat transfer is in coincidence with experimental results.  相似文献   

8.
Heat transfer enhancement of a mixed convection laminar Al2O3–water nanofluid flow in an annulus with constant heat flux boundary condition has been studied employing two phase mixture model and effective expressions of nanofluid properties. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq’s hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. The Brownian motions of nanoparticles have been considered to determine the effective thermal conductivity and the effective dynamic viscosity of Al2O3–water nanofluid, which depend on temperature. Three-dimensional Navier–Stokes, energy and volume fraction equations have been discretized using the finite volume method while the SIMPELC algorithm has been introduced to couple the velocity–pressure. Numerical simulations have been presented for the nanoparticles volume fraction (?) between 0 and 0.05 and different values of the Grashof and Reynolds numbers. The calculated results show that at a given Re and Gr, increasing nanoparticles volume fraction increases the Nusselt number at the inner and outer walls while it does not have any significant effect on the friction factor. Both the Nusselt number and the friction coefficient at the inner wall are more than their corresponding values at the outer wall.  相似文献   

9.
A numerical study has been performed to analyze nanofluids convective heat transfer. Laminar α-Al2O3-water nanofluid flows in an entrance region of a horizontal circular tube with constant surface temperature. Numerical analysis has been carried out using two different single-phase models (homogenous and dispersion) and two-phase models (Eulerian–Lagrangian and mixture). A new model is developed to consider the nanoparticles dispersion. The transport equations for the tube with constant surface temperature were solved numerically using a control volume approach. The effects of nanoparticles volume fraction (0.5, 1 %) and Reynolds number (650 ≤ Re ≤ 2300) on nanofluid convective heat transfer coefficient were studied. The results are compared with the experimental data and it is shown that the homogenous single-phase model is underestimated and the mixture model is overestimated. Although the Eulerian–Lagrangian model gives a reasonable prediction for the thermal behavior of nanofluids, the dispersion single-phase model gives more accurate prediction despite its simplicity.  相似文献   

10.
Convective heat transfer within circular microchannels in a rectangular solid substrate with heat generation due to imposed magnetic field was studied. A detailed parametric study was performed by varying Reynolds number, magnetic field strength, working fluid, and the diameter of the channel. It was found that the heat transfer coefficient decreases downstream along the channel. Nusselt number increased with Reynolds number. The tube diameter, properties of the working fluid, and magnetic field strength affected the temperature distribution and heat transfer rate at the solid-fluid interface.  相似文献   

11.
A numerical study is performed to analyze steady laminar forced convection in a channel in which discrete heat sources covered with porous material are placed on the bottom wall. Hydrodynamic and heat transfer results are reported. The flow in the porous medium is modeled using the Darcy–Brinkman–Forchheimer model. A computer program based on control volume method with appropriate averaging for diffusion coefficient is developed to solve the coupling between solid, fluid, and porous region. The effects of parameters such as Reynolds number, Prandtl number, inertia coefficient, and thermal conductivity ratio are considered. The results reveal that the porous cover with high thermal conductivity enhances the heat transfer from the solid blocks significantly and decreases the maximum temperature on the heated solid blocks. The mean Nusselt number increases with increase of Reynolds number and Prandtl number, and decrease of inertia coefficient. The pressure drop along the channel increases rapidly with the increase of Reynolds number.  相似文献   

12.
A numerical study of fluid flow and heat transfer in a two-dimensional channel under fully developed turbulent conditions is reported. A computer program which is capable of treating both forced and natural convection problems under turbulent conditions has been developed. The code uses the high-Reynolds-number form of the two equation turbulent model(k-?) in which a turbulent kinetic energy near-wall model is incorporated in order to accurately represent the behavior of the flow near the wall, particularly in the viscous sublayer where the turbulent Reynolds number is small. A near-wall temperature model has been developed and incorporated into the energy equation to allow accurate prediction of the temperature distribution near the wall and, therefore, accurate calculation of heat transfer coefficients. The sensitivity of the prediction of flow and heat transfer to variations in the coefficients used in the turbulence model is investigated. The predictions of the model are compared to available experimental and theoretical results; good agreement is obtained. The inclusion of the near-wall temperature model has further improved the predictions of the temperature profile and heat transfer coefficient. The results indicate that the turbulent kinetic energy Prandtl number should be a function of Reynolds number.  相似文献   

13.
This paper describes flow and heat transfer characteristics of laminar mixed-convection flows of water with sub-millimeter bubbles in a vertical channel. We use thermocouples and a particle tracking velocimetry technique for the temperature and velocity measurements. The working fluid used is tap water, and hydrogen bubbles generated by electrolysis of the water are used as the sub-millimeter bubbles. The Reynolds number of the main flow ranges from 100 to 200. The ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection (the heat transfer coefficient ratio) ranges from 1.24 to 1.38. The heat transfer coefficient ratio decreases with the increase in the Reynolds number. We conclude from velocity measurements that this decrease is mainly caused by a decrease in the advection effect due to sub-millimeter bubbles.  相似文献   

14.
In this paper, flow and heat transfer of a nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth order Runge–Kutta integration scheme featuring a shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titanium oxide (TiO2) with water as their base fluid has been considered. The influence of significant parameters such as nanoparticle volume fraction, nanofluids type, magnetic parameter and Reynolds number on the flow and heat transfer characteristics is discussed. It was found that the Nusselt number increases as each of Reynolds number or nanoparticles volume fraction increase, but it decreases as magnetic parameter increase. Also it can be found that choosing copper (for small of magnetic parameter) and alumina (for large values of magnetic parameter) leads to the highest cooling performance for this problem.  相似文献   

15.
The problem of unsteady laminar flow and heat transfer of a particulate suspension in an electrically conducting fluid through channels and circular pipes in the presence of a uniform transverse magnetic field is formulated using a two-phase continuum model. Two different applied pressure gradient (oscillating and ramp) cases are considered. The general governing equations of motions (which include such effects as particulate phase stresses, magnetic force, and finite particle-phase volume fraction) are non-dimensionalized and solved in closed form in terms of Fourier cosine and Bessel functions and the energy equations for both phases are solved numerically since they are non-linear and are difficult to solve analytically. Numerical solutions based on the finite-difference methodology are obtained and graphical results for the fluid-phase volumetric flow rate, the particle-phase volumetric flow rate, the fluid-phase skin-friction coefficient and the particle-phase skin-friction coefficient as well as the wall heat transfer for plane and axisymmetric flows are presented and discussed. In addition, these numerical results are validated by favorable comparisons with the closed-form solutions. A comprehensive parametric study is performed to show the effects of the Hartmann magnetic number, the particle loading, the viscosity ratio, and the temperature inverse Stokes number on the solutions.  相似文献   

16.
Liquid crystal thermometry (LCT) was used to quantify temperature fields in a flow over resistively heated waves and assess the effect of the large-scale longitudinal structures that were previously obtained in the velocity field for an isothermal flow (A. Günther and P. Rudolf von Rohr, submitted article, 2002). The wavelength 6 was 10 times larger than the amplitude, and the considered Reynolds numbers were 725 and 3300, defined with the bulk velocity and the half-channel height. A constant heat flux was imposed at the wavy bottom wall. For the first time, LCT was used to determine the fluid temperature in a wall-bounded flow with heat transfer. The dominant spanwise scale obtained from a proper orthogonal decomposition (POD) of the fluid temperature field above an uphill location of the wavy wall was 1.56. It agrees well with the one previously obtained for a decomposition of the streamwise velocity.  相似文献   

17.
The present study experimentally investigates the effect of multi wall carbon nanotubes (MWCNT) suspensions on the convective heat transfer coefficients. The MWCNT suspensions used in this study were prepared by dispersing MWCNTs in deionized water 0.25 wt% arab gum solution. The heat transfer characteristics were measured for thermally developing laminar flow in a finite length horizontal circular pipe under isothermal wall conditions. The study was conducted over a range of Reynolds number of 300–2,300, based on 0.8 mm tube diameter. Results indicate enhancements of the convective heat transfer coefficient as a function of Reynolds number and volume fractions. An average enhancement of heat transfer coefficient of 50 % was observed over the base fluid. An overall increase of pumping force varying from 20 to 30 % over the flowing range is observed. The results suggest an optimum MWCNT volume fraction point of 0.1 % which gives the best heat transfer enhancement.  相似文献   

18.
This work is focused on numerical simulations of natural convection heat transfer in Al2O3-water nanofluids using computational fluid dynamics approach. Fluent v6.3 is used to simulate water based nanofluid considering it as a single phase. Thermo-physical properties of the nanofluids are considered in terms of volume fraction and size of nanoparticles, size of base fluid molecule and temperature. The numerical values of effective thermal conductivity have also been compared with the experimental values available in the literature. The numerical result simulated shows decrease in heat transfer with increase in particle volume fraction. Computed result shows similar trend in increase of Nusselt number with Relayigh number as depicted by experimental results. Streamlines and temperature profiles are plotted to demonstrate the effect.  相似文献   

19.
Natural convective heat transfer and fluid flow in a vertical rectangular duct filled with a nanofluid is studied numerically assuming the thermal conductivity to be dependent on the fluid temperature. The transport equations for mass, momentum and energy formulated in dimensionless form are solved numerically using finite difference method. Particular efforts have been focused on the effects of the thermal conductivity variation parameter, Grashof number, Brinkman number, nanoparticles volume fraction, aspect ratio and type of nanoparticles on the fluid flow and heat transfer inside the cavity. It is found that the flow was enhanced for the increase in Grashof number, Brinkman number and aspect ratio for any values of conductivity variation parameter and for regular fluid and nanofluid. The heat transfer rate for regular fluid is less than that for the nanofluid for all governing parameters.  相似文献   

20.
The TiO_2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem(BVP). The BVP is analytically solved with the homotopy analysis method(HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO_2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO_2 nanoparticles increases. This confirms the fact that the occurrence of the TiO_2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased.An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water,while the Nusselt number of the nanofluid is larger than that of pure water. However,both the parameters increase if the magnetic field intensity increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号