首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of process parameters on transmembrane flux during direct osmosis   总被引:1,自引:0,他引:1  
Direct osmosis is a non-thermal membrane process employed for the concentration of fruit juices at ambient temperature and atmospheric pressure, thereby maintaining the organoleptic and nutritional properties of fruit juices. In the present study, concentration of pineapple juice by direct osmosis was explored. Aqueous solution of sucrose (0–40%, w/w)–sodium chloride (0–26%, w/w) combination was investigated as an alternative osmotic agent. The sucrose–sodium chloride combination can overcome the drawback of sucrose (low flux) and sodium chloride (salt migration) as osmotic agents during direct osmosis process. The effect of the hydrodynamic conditions in the module and feed temperature (25–45 °C) on transmembrane flux was evaluated. For a range of hydrodynamic conditions studied, it was observed that transmembrane flux increases with Reynolds number. The increase in feed temperature resulted in an increase in transmembrane flux. The pineapple juice was concentrated upto a total soluble solids content of 60 °Brix at ambient temperature. The effect of direct osmosis process on physico-chemical characteristics of pineapple juice was also studied. The ascorbic acid content was well preserved in the pineapple juice concentrate by direct osmosis process.  相似文献   

2.
Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 °C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 μg g− 1) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 μg g− 1 for As, from 0.068 to 2.85 μg g− 1 for Cd, between 26.4 and 90.7 μg g− 1 for Cr, from 9.3 to 40.0 μg g− 1 for Ni and between 16.3 and 183.0 μg g− 1 for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.  相似文献   

3.
New types of supported Pd membranes were developed for high temperature H2 separation. Sequential combinations of boehmite sol slip casting and film coating, and electroless plating (ELP) steps were designed to synthesize “Pd encapsulated” and “Pd nanopore” membranes supported on -Al2O3 hollow fibers. The permeation characteristics (flux, permselectivity) of a series of unaged and aged encapsulated and nanopore membranes with different Pd loadings were compared to those of a conventional 1 μm Pd/4 μm γ-Al2O3/-Al2O3 hollow fiber membrane. The unaged encapsulated membrane exhibited good performance with ideal H2/N2 separation factors of 3000–8000 and H2 flux 0.4 mol/m2 s at 370 °C and a transmembrane pressure gradient of 4 × 105 Pa. The unaged Pd nanopore membranes had a lower initial flux and permselectivity, but exhibited superior performance with extended use (200 h). At the same conditions the unaged 2.6 μm Pd nanopore membrane had a H2 flux of 0.16 mol/m2 s and separation factor of 500 and the unaged 0.6 μm Pd nanopore membrane had a H2 flux of 0.25 mol/m2 s and separation factor of 50. Both nanopore membranes stabilized after 40 h of operation, in contrast to a continued deterioration of the permselectivity for the other membranes. An analysis of the permeation data reveals a combination of Knudsen and convective transport through membrane defects. A phenomenological, qualitative model of the synthesis and resulting structure of the encapsulated and nanopore membranes is presented to explain the permeation results.  相似文献   

4.
In the present study, the permeation behavior of methanol and methyl acetate in the pervaporation (PV) experiments are compared with those in vapor permeation (VP) experiments using a PVA-based composite membrane. Experiments have been carried out to study the selectivity and mass transport flux of the systems under varying operations conditions of feed temperature (40–60 °C) and feed methanol concentrations (2–34 wt%). The selected membrane was found to be methanol selective. Results show higher permeation flux but a similar separation factor for methanol in PV than in VP. For PV operation, the resulting separation factor at 60 °C shows a monotonous decrease (6.4–4.1) as the alcohol concentration in the feed mixture increases (2.3–34 wt%), whereas the total flux increases from 0.97 to 7.9 kg m−2 h−1. Based on the solution-diffusion theory, a mathematical model that describes satisfactorily the permeation fluxes of methanol and methyl acetate in both the PV and VP processes has been applied. The fluxes of both permeants can be explained by the solution-diffusion model with variable diffusion coefficients dependent on MeOH concentration in the membrane. Both PV and VP processes can be described with the same model but using different fitting parameters.  相似文献   

5.
This paper investigates the use of NiO particles to enhance the vapour sensing properties of polyethylene adipate (PEA)\carbon black (CB) composite materials. Four PEA\CB suspensions were prepared with 0, 10, 20 and 30 w/w% NiO, respectively. Hypermer PS3 surfactant was shear mixed into each of the suspensions for 300 s to achieve a homogenous dispersion and to prevent reagglommeration of both the CB and NiO particles. A 0.1 μl drop of each composite was deposited between Cu electrodes on a printed circuit board (PCB) substrate using a microlitre syringe. The samples were allowed to dry for 24 h in an oven at 333 K to remove any remaining solvent. After preparation, the sensors were exposed to propanol and butanol at concentrations ranging from 0 to 25 000 ppm in steps of 5000 ppm. The response of the PEA\CB sensors improved significantly as the concentration of NiO particles in the material increased and maximum relative differential responses as high as 37% and 92.8% were recorded after exposure to 25 000 ppm propanol and butanol, respectively. This high response can be explained using the Flory–Huggins interaction parameter along with structural changes in the polymer composite caused by the addition of NiO. This paper concludes that NiO particles can be used as a method to increase the sensitivity of existing conducting polymer composite gas sensing materials.  相似文献   

6.
Novel ultrafiltration membranes were prepared by simple blending of polyethersulfone (PES) and soybean phosphatidylcholine (SPC). X-ray photoelectron spectroscopy (XPS) and water contact angle measurements indicated SPC enrichment at the membrane surfaces. The immobilization and arrangement of PC groups at surfaces rendered the membranes more hydrophilic. BSA adsorption amount decreased from 56.2 μg/cm2 for SPC-free PES membrane to 2.4 μg/cm2 for PES/SPC blend membrane. The fouling-resistant property of the blend membranes was improved considerably with an increase of SPC content while the pure water permeation flux decreased remarkably. Using PEG/PVP mixture instead of PEG as pore-forming agent increased pure water flux of PES/SPC blend membrane to some extent.  相似文献   

7.
Determination of carotenoids in tomato juice by liquid chromatography   总被引:13,自引:0,他引:13  
A high-performance liquid chromatography method was developed to determine the various carotenoids in tomato juice. A C30 column and a mobile phase of acetonitrile-1-butanol (7:3, v/v) (A) and methylene chloride (B) with the following gradient elution were used: 99% A and 1% B intitally, increased to 4% B in 20 min, 10% B in 50 min and returned to 1% B in 55 min. Sixteen carotenoids, including all-trans-lutein, all-trans-beta-carotene, all-trans-lycopene and their 13 cis isomers were identified and resolved within 52 min with flow-rate at 2.0 ml/min and detection at 476 nm. Of the various extraction solvent systems, the best extraction efficiency of carotenoids in tomato juice was achieved by employing ethanol-hexane (4:3, v/v). Lycopene was found to be present in largest amount in tomato juice, followed by beta-carotene and lutein.  相似文献   

8.
Pineapple juice is one of the popular fruit juice due to its pleasant aroma and flavor. Concentration of clarified pineapple juice was carried out by osmotic membrane distillation in a plate and frame membrane module. Concentration and temperature polarization effects are found to have significant role on flux reduction during osmotic membrane distillation process. The contribution of these polarization effects on reduction of the driving force (in turn the flux) at various process conditions such as osmotic agent concentration (2–10 mol/kg (1 molality = 1 mol/kg)), flow rate (25–100 ml/min) of feed and osmotic agent are studied. Concentration polarization has more significant effect on flux reduction when compared to temperature polarization. The experimental fluxes were in good agreement with theoretical fluxes when calculated by considering both concentration and temperature polarization effects. The pineapple juice was concentrated up to a total soluble solids content of 62°Brix at ambient temperature.  相似文献   

9.
An intensive multi-disciplinary research effort is underway at Wayne State University to synthesize and characterize magnetic nanoparticles in a biocompatible matrix for biomedical applications. The particular system being studied consists of 3–10 nm γ-Fe2O3 nanoparticles in an alginate matrix, which is being studied for applications in targeted drug delivery, as a magnetic-resonance imaging (MRI) contrast agent, and for hyperthermic treatments of malignant tumors. In the present work we report on our efforts to determine if laser-induced breakdown spectroscopy (LIBS) can offer a more accurate and substantially faster determination of iron content in such nanoparticle-containing materials than competing technologies such as inductively-coupled plasma (ICP). Standardized samples of -Fe2O3 nanoparticles (5–25 nm diameter) and silver micropowder (2–3.5 μm diameter) were created with thirteen precisely known concentrations and pressed hydraulically to create solid “pellets” for LIBS analysis. The ratio of the intensity of an Fe(I) emission line at 371.994 nm to that of an Ag(I) line at 328.069 nm was used to create a calibration curve exhibiting an exponential dependence on Fe mass fraction. Using this curve, an “unknown” γ-Fe2O3/alginate/silver pellet was tested, leading to a measurement of the mass fraction of Fe in the nanoparticle/alginate matrix of 51 ± 3 wt.%, which is in very good agreement with expectations and previous determinations of its iron concentration.  相似文献   

10.
Arancibia V  López A  Zúñiga MC  Segura R 《Talanta》2006,68(5):1567-1573
The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO2. Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)3 were achieved when the experiments were carried out at a pressure of 2500 psi, a temperature of 90 °C, 2.0 mL of methanol, 20.0 min of static extraction and 5.0 min of dynamic extraction in the presence of 18 mg of ADDTP. Analysis of arsenic was made using 150 mg L−1 of Cu(II) in 1 M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of −0.50 V and the intermetallic compound CuxAsy was reduced at a potential of −0.77 to −0.82 V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)3 solution was linear from 0.8 to 12.5 μg L−1 of arsenic (LOD 0.5 μg L−1, R = 0.9992, tacc = 60 s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10 ± 0.18 mg kg−1; pulp 3.83 ± 0.19 mg kg−1 and juice 0.71 ± 0.09 mg L−1; arsenic in carrots was: skin 2.15 ± 0.09 mg kg−1; pulp 0.59 ± 0.11 mg kg−1 and juice 0.71 ± 0.03 mg L−1. Arsenic in water were: Chiu-Chiu 0.08 mg L−1, Inacaliri 1.12 mg L−1, and Salado river 0.17 ± 0.07 mg L−1.  相似文献   

11.
12.
This work deals with investigations on the enantioseparation of glycyl-dipeptides by capillary electrochromatography (CEC) on a capillary packed with teicoplanin aglycone immobilized on 3.5 μm silica gel. The results were compared to those obtained with micro-HPLC using the same chiral stationary phase. Polar organic and reversed-phase mode were checked, whereby the latter showed better results. Out of 12 glycyldipetides investigated, all compounds showed baseline separation with Rs values up to 20. Plate numbers were in the range of 10 000–300 000/m. The choice of organic modifier was found to be crucial. While methanol increased retention time, acetonitrile reduced it. A ternary mixture of ethanol–acetonitrile–aqueous triethylamine acetate solution pH 4.1 was found to be a useful compromise, providing excellent resolution with retention times less than 25 min. Efficiency and resolution were generally found to be higher in CEC than with micro-HPLC.  相似文献   

13.
To determine the technical and economic feasibility of cross-flow microfiltration on an industrial scale, the expected decline of permeation flux must be predicted taking into account the variability of juice's fouling potential. However, the main difficulty is finding representative parameters. Two semi-empirical models – gel polarisation and mechanistic – were used to fit experimental permeation flows using initial juice turbidity as surrogate for the volumetric concentration of particles in the feed juice. The experimental data of different banana, pineapple, and blackberry juices fitted well in both models. Although the mechanistic model more accurately estimated the permeation flux density, for practical application, the simpler polarisation model was preferred. Because this method uses a factor (i.e. turbidity) that reflects juice's fouling potential, it allows the optimisation of processing parameters and the prediction of permeation flux range in real industrial conditions.  相似文献   

14.
A composite of oxygen ion conducting oxide Ce0.8Sm0.2O2−δ (60 vol.%) and electron conducting oxide La0.8Sr0.2CrO3−δ was prepared by sintering a powder compact at a temperature of 1550 °C. No significant reaction between the two constituent oxides was observed under preparation and oxygen permeation conditions. Appreciable oxygen permeation fluxes through the composite membrane were measured at elevated temperatures with one side of it exposed to the ambient air and the other side to a flowing helium gas stream. The oxygen flux initially increased with time, and took a long time to reach a steady value. A steady oxygen permeation flux as high as 1.4 × 10−7 mol cm−2 s−1 was obtained with a 0.3 mm thick membrane at 950 °C under a relatively small oxygen partial pressure difference of 0.21 bar/0.0092 bar. It was revealed that the overall oxygen permeation process was mainly limited by the transport in the bulk of the membrane in the range of the membrane thickness greater than 1.0 mm, and the limitation by the surface oxygen exchange came into play at reduced thickness of 0.6 mm.  相似文献   

15.
Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.  相似文献   

16.
Osmotic distillation (OD) or osmotic evaporation (OE) is a promising membrane process generally applied to concentrate solutions under isothermal conditions. In this work, this process was applied to concentrate commercial noni juice (Morinda citrifolia). Several nutraceutical properties have been reported for noni-derived products, mainly associated to the phenolic content of the fruit.The analyzed system is an osmotic distillation system where the solutions are circulated through a hollow fiber membrane contactor operating in transient configuration with circulation rates between 0.1 and 1.0 L min−1 and concentrated solutions of CaCl2 were used as extraction brine. At isothermal conditions (30 °C), transmembrane vapor water flux was experimentally determined from 0.090 up to 0.413 kg h−1 m−2. Noni juice was concentrated from 8 to 32 °Brix after 60 min of treatment. The content of phenolic compounds was preserved after this processing.Simulation algorithms based on phenomenological equations of heat and mass transfer were developed considering a resistances-in-series model to predict the performance of the process from theoretical information. The values of transmembrane water flux obtained by simulations showed deviations between 2.35 and 16.19% with the experimental ones for the operating conditions applied in this work.  相似文献   

17.
Ovine milk proteins were analyzed both by coupling HPLC and electrospray ionization mass spectrometry (ESI-MS) and by flow injection analysis and ESI-MS detection after separation and collection of fractions from gel permeation chromatography. These methods resolved the four ovine caseins and whey proteins and made it possible to study the complexity of these proteins associated with genetic polymorphism, post-translational changes (phosphorylation and glycosylation) and the presence of multiple forms of proteins. The experimental molecular masses of ewe milk proteins were: 19 373 for κ-casein 3P; 25 616 for s2-casein 10P; 23 411 for s1-casein C-8P; 23 750 for β-casein 5P; 18 170 and 18 148 for β-lactoglobulins A and B; 14 152 for -lactalbumin A and 66 322 for serum albumin.  相似文献   

18.
Commercially available asymmetric membranes of the Loeb-Sourirajan (L-S) type comprise a support fabric, bonded to the porous substructure. The influence of this fabric on osmotic permeation flux was examined, mostly with a Toray CA-3000 membrane from which, with care, it was possible to remove the support fabric. In osmosis experiments with 12% MgCl2 solution on one side (either side) and 6% solution on the other, the permeation flux (J1) was of the order of 0.01 and 0.06 m3/m2 d with and without fabric, respectively. These results could be generalized by considering the resistivity to solute diffusion in the non-skin part of the membrane. This resistivity term averaged 104 and 17 d/m for membranes with and without fabric, respectively, and in further tests without fabric, it was between 15 and 25 d/m over a wide range of MgCl2 concentrations. Four other L-S membranes, all with support fabric, were tested in osmosis experiments. Their resistivity values were similar to or higher than those of the Toray membrane with fabric, but, with one of the four, the results were affected by switching the location of the high and low concentration solutions. It was concluded that existing commercially available L-S membranes are not appropriate for large-scale osmosis applications because their support fabric decreases permeation flux excessively.  相似文献   

19.
A detailed analysis of the proton high‐field (600 MHz) NMR spectra of tomato juice and pulp is reported for the first time. A combination of J‐resolved, COSY, TOCSY, DOSY, 1H–13C HSQC and 1H–13C HMBC 2D sequences was used to assign each spin system and to separate the components of the complex patterns in the 1D overlapped proton spectra. To obtain resolved proton spectra of tomato pulps the high‐resolution magic angle spinning technique was used; a comparison with the liquid‐state NMR spectra of the corresponding juices was accomplished. On the basis of the assignments made, the chemical composition of tomato juices from two cultivars (Red Setter and Ciliegino) was determined. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
A pinhole-free palladium membrane with a thickness of 3 μm has been prepared on the surface of a porous sintered stainless steel tube coated with a thin silver layer as a diffusion barrier. Filling of aluminum hydroxide gel in the surface pores of the tube is effective in preventing defect formation during electroless plating of the palladium layer, while the volume of the hydroxide beneath the membrane decreases greatly upon thermal treatment up to 500 °C. The hydrogen flux at 400–500 °C is reasonably proportional to the pressure difference between the two sides of the membrane. Addition of a 2 μm Pd0.8Ag0.2 alloy layer on the membrane by electroplating does not greatly decrease the hydrogen permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号